Text Generation
Transformers
ONNX
llama
sparse
instruct
deepsparse
mgoin commited on
Commit
66ca8fb
·
verified ·
1 Parent(s): ceb989e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: neuralmagic/Llama-2-7b-pruned70-retrained-instruct
3
+ inference: false
4
+ model_type: llama
5
+ pipeline_tag: text-generation
6
+ datasets:
7
+ - garage-bAInd/Open-Platypus
8
+ - Open-Orca/OpenOrca
9
+ - cognitivecomputations/dolphin
10
+ tags:
11
+ - sparse
12
+ - instruct
13
+ - deepsparse
14
+ ---
15
+
16
+ # Llama-2-7b-pruned70-retrained-instruct-quant-ds
17
+
18
+ This repo contains a [70% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) finetuned for instruction-following tasks using a blend of the Platypus + Open Orca + Dolphin datasets.
19
+ It was then quantized to 8-bit weights + activations and exported to deploy with [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
20
+
21
+ **Authors**: Neural Magic, Cerebras
22
+
23
+ ## Usage
24
+
25
+ Below we share some code snippets on how to get quickly started with running the model.
26
+
27
+ ### Sparse Transfer
28
+
29
+ By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
30
+
31
+ ### Running the model
32
+
33
+ For accelerated inference with sparsity on CPUs, deploy with [deepsparse](https://github.com/neuralmagic/deepsparse).
34
+
35
+ ```python
36
+ # pip install deepsparse[llm]
37
+ from deepsparse import TextGeneration
38
+
39
+ model = TextGeneration(model_path="hf:neuralmagic/Llama-2-7b-pruned70-retrained-instruct-quant-ds")
40
+
41
+ input_text = "Write me a poem about Machine Learning."
42
+ outputs = model(formatted_prompt, max_new_tokens=100)
43
+ print(outputs.generations[0].text)
44
+ ```
45
+
46
+ ## Evaluation Benchmark Results
47
+
48
+ Model evaluation metrics and results.
49
+
50
+ | Benchmark | Metric | Llama-2-7b-instruct | Llama-2-7b-pruned70-retrained-instruct-quant-ds |
51
+ |------------------------------------------------|---------------|-------------|-------------------------------|
52
+ | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | xxxx | xxxx |
53
+ | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | xxxx | xxxx |
54
+ | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | xxxx | xxxx |
55
+ | [ARC-c](https://arxiv.org/abs/1911.01547) | | xxxx | xxxx |
56
+ | [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | xxxx | xxxx |
57
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx |
58
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | xxxx | xxxx |
59
+
60
+ ## Model Training Details
61
+
62
+ Coming soon.
63
+
64
+ ## Help
65
+
66
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)