File size: 3,892 Bytes
15d5f9b bd83739 15d5f9b 77e923a 15d5f9b 77e923a 15d5f9b 77e923a 15d5f9b c7099f7 b7105bf c7099f7 15d5f9b c7099f7 c01bd22 15d5f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: neuralmagic/Llama-2-7b-pruned70-retrained
inference: true
model_type: llama
pipeline_tag: text-generation
datasets:
- cerebras/SlimPajama-627B
- HuggingFaceH4/ultrachat_200k
tags:
- sparse
- chat
---
# Llama-2-7b-pruned70-retrained-ultrachat
This repo contains a [70% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) finetuned for chat tasks using the [UltraChat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset.
Official model weights from [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594).
**Authors**: Neural Magic, Cerebras
## Usage
Below we share some code snippets on how to get quickly started with running the model.
### Sparse Transfer
By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
### Running the model
This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).
```python
# pip install transformers accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained-ultrachat")
model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained-ultrachat", device_map="auto")
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer.apply_chat_template(input_text, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
## Evaluation Benchmark Results
Model evaluation metrics and results.
| Benchmark | Metric | Llama-2-7b-ultrachat | Llama-2-7b-pruned70-retrained-ultrachat |
|------------------------------------------------|---------------|-------------|-------------------------------|
| [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot | 46.1% | 32.5% |
| [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | 75.9% | 68.9% |
| [WinoGrande](https://arxiv.org/abs/1907.10641) | 5-shot | 72.6% | 65.1% |
| [ARC-c](https://arxiv.org/abs/1911.01547) | 25-shot | 52.8% | 45.3% |
| [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | 44.8% | 39.6% |
| [GSM8K](https://arxiv.org/abs/2110.14168) | 5-shot | 12.4% | 4.8% |
| [AlpacaEval](https://arxiv.org/abs/2107.03374) ([Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) evaluator) | Win rate | 57.6% | 57.4% |
| [AlpacaEval](https://arxiv.org/abs/2107.03374) (GPT-4 Turbo evaluator) | Win rate | 60.6% | 54.0% |
## Model Training Details
This model was obtained by sparse-tranfer of the sparse foundational model [Llama-2-7b-pruned70-retrained](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) on the [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset.
Training was performed for 2 epochs and used the [SquareHead](https://arxiv.org/abs/2310.06927) knowledge distillation with [Llama-2-7b-ultrachat](https://huggingface.co/neuralmagic/Llama-2-7b-ultrachat) as teacher.
## Help
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ) |