File size: 8,831 Bytes
fa37030
2bfe93f
 
 
fa37030
 
8f89d5f
 
 
 
 
 
 
fa37030
 
2bfe93f
fa37030
 
 
 
 
 
 
 
 
 
 
8f89d5f
 
fa37030
 
e191b8d
fa37030
 
 
d7ac0b1
fa37030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5278f0
fa37030
 
 
 
 
 
 
 
 
 
 
 
a5278f0
fa37030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f89d5f
 
e94a1df
fa37030
d7ac0b1
 
fa37030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343a1c
fa37030
1343a1c
41fa77c
1343a1c
41fa77c
 
 
 
 
1343a1c
41fa77c
1343a1c
fa37030
1343a1c
fa37030
 
 
e191b8d
fa37030
1343a1c
fa37030
1343a1c
fa37030
1343a1c
fa37030
 
 
e191b8d
fa37030
8f89d5f
fa37030
1343a1c
fa37030
1343a1c
fa37030
 
 
 
 
1343a1c
fa37030
1343a1c
fa37030
1343a1c
fa37030
 
 
 
 
1343a1c
fa37030
1343a1c
fa37030
 
 
 
 
e191b8d
fa37030
1343a1c
fa37030
1343a1c
fa37030
1343a1c
fa37030
 
 
 
 
1343a1c
fa37030
1343a1c
fa37030
1343a1c
fa37030
 
e191b8d
 
 
 
 
 
 
 
 
 
d7ac0b1
41fa77c
 
 
e191b8d
 
 
 
41fa77c
 
 
 
d7ac0b1
41fa77c
 
 
 
 
 
e191b8d
 
 
 
d7ac0b1
e191b8d
 
 
 
 
 
 
 
 
 
d7ac0b1
e191b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
---
tags:
- int8
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
---

# Meta-Llama-3.1-8B-Instruct-quantized.w8a8

## Model Overview
- **Model Architecture:** Meta-Llama-3
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Activation quantization:** INT8
  - **Weight quantization:** INT8
- **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 7/11/2024
- **Version:** 1.0
- **License(s):** Llama3.1
- **Model Developers:** Neural Magic

Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.

### Model Optimizations

This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.

Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
GPTQ used a 1% damping factor and 256 sequences of 8,192 random tokens.


## Deployment

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8"
number_gpus = 1
max_model_len = 8192

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.


## Creation

This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.

```python
from transformers import AutoTokenizer
from datasets import Dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random

model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"

num_samples = 256
max_seq_len = 8192

tokenizer = AutoTokenizer.from_pretrained(model_id)

max_token_id = len(tokenizer.get_vocab()) - 1
input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)]
attention_mask = num_samples * [max_seq_len * [1]]
ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask})

recipe = GPTQModifier(
  targets="Linear",
  scheme="W8A8",
  ignore=["lm_head"],
  dampening_frac=0.01,
)

model = SparseAutoModelForCausalLM.from_pretrained(
  model_id,
  device_map="auto",
)

oneshot(
  model=model,
  dataset=ds,
  recipe=recipe,
  max_seq_length=max_seq_len,
  num_calibration_samples=num_samples,
)

model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w8a8")
```


## Evaluation

The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).

**Note:** Results have been updated after Meta modified the chat template.

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>Meta-Llama-3.1-8B-Instruct </strong>
   </td>
   <td><strong>Meta-Llama-3.1-8B-Instruct-quantized.w8a8 (this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>68.32
   </td>
   <td>67.83
   </td>
   <td>99.3%
   </td>
  </tr>
  <tr>
   <td>MMLU (CoT, 0-shot)
   </td>
   <td>72.83
   </td>
   <td>72.18
   </td>
   <td>99.1%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (0-shot)
   </td>
   <td>81.40
   </td>
   <td>81.66
   </td>
   <td>100.3%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (CoT, 8-shot, strict-match)
   </td>
   <td>82.79
   </td>
   <td>84.84
   </td>
   <td>102.5%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>80.47
   </td>
   <td>79.96
   </td>
   <td>99.4%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>78.06
   </td>
   <td>77.27
   </td>
   <td>99.0%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot, mc2)
   </td>
   <td>54.48
   </td>
   <td>54.17
   </td>
   <td>99.4%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>74.05</strong>
   </td>
   <td><strong>73.99</strong>
   </td>
   <td><strong>99.9%</strong>
   </td>
  </tr>
</table>

### Reproduction

The results were obtained using the following commands:

#### MMLU
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto
```

#### MMLU-CoT
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
  --tasks mmlu_cot_0shot_llama_3.1_instruct \
  --apply_chat_template \
  --num_fewshot 0 \
  --batch_size auto
```

#### ARC-Challenge
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
  --tasks arc_challenge_llama_3.1_instruct \
  --apply_chat_template \
  --num_fewshot 0 \
  --batch_size auto
```

#### GSM-8K
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
  --tasks gsm8k_cot_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 8 \
  --batch_size auto
```

#### Hellaswag
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
  --tasks hellaswag \
  --num_fewshot 10 \
  --batch_size auto
```

#### Winogrande
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
  --tasks winogrande \
  --num_fewshot 5 \
  --batch_size auto
```

#### TruthfulQA
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
  --tasks truthfulqa \
  --num_fewshot 0 \
  --batch_size auto
```