alexmarques commited on
Commit
4d31352
·
verified ·
1 Parent(s): fe1f31f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +217 -0
README.md ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - int8
9
+ - vllm
10
+ base_model: HuggingFaceTB/SmolLM-1.7B-Instruct
11
+ ---
12
+
13
+ # SmolLM-1.7B-Instruct-quantized.w8a8
14
+
15
+ ## Model Overview
16
+ - **Model Architecture:** Llama
17
+ - **Input:** Text
18
+ - **Output:** Text
19
+ - **Model Optimizations:**
20
+ - **Activation quantization:** INT8
21
+ - **Weight quantization:** INT8
22
+ - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [SmolLM-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct), this models is intended for assistant-like chat.
23
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
24
+ - **Release Date:** 8/23/2024
25
+ - **Version:** 1.0
26
+ - **License(s):** [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
27
+ - **Model Developers:** Neural Magic
28
+
29
+ Quantized version of [SmolLM-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct).
30
+ It achieves an average score of 41.23 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 41.76.
31
+
32
+ ### Model Optimizations
33
+
34
+ This model was obtained by quantizing the weights of [SmolLM-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct) to INT8 data type.
35
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
36
+
37
+ Only weights and activations of the linear operators within transformers blocks are quantized.
38
+ Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
39
+ Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
40
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
41
+ GPTQ used a 1% damping factor and 1,024 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
42
+
43
+ ## Deployment
44
+
45
+ ### Use with vLLM
46
+
47
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
48
+
49
+ ```python
50
+ from vllm import LLM, SamplingParams
51
+ from transformers import AutoTokenizer
52
+
53
+ model_id = "neuralmagic/SmolLM-1.7B-Instruct-quantized.w8a8"
54
+
55
+ sampling_params = SamplingParams(temperature=0.6, top_p=0.92, max_tokens=100)
56
+
57
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
58
+
59
+ messages = [
60
+ {"role": "user", "content": "List the steps to bake a chocolate cake from scratch."},
61
+ ]
62
+
63
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
+
65
+ llm = LLM(model=model_id)
66
+
67
+ outputs = llm.generate(prompts, sampling_params)
68
+
69
+ generated_text = outputs[0].outputs[0].text
70
+ print(generated_text)
71
+ ```
72
+
73
+ vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
74
+
75
+ ## Creation
76
+
77
+ This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
78
+
79
+ ```python
80
+ from transformers import AutoTokenizer
81
+ from datasets import Dataset
82
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
83
+ from llmcompressor.modifiers.quantization import GPTQModifier
84
+ import random
85
+
86
+ model_id = "HuggingFaceTB/SmolLM-1.7B-Instruct"
87
+
88
+ num_samples = 1024
89
+ max_seq_len = 2048
90
+
91
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
92
+
93
+ def preprocess_fn(example):
94
+ return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
95
+
96
+ ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
97
+ ds = ds.shuffle().select(range(num_samples))
98
+ ds = ds.map(preprocess_fn)
99
+
100
+ recipe = GPTQModifier(
101
+ targets="Linear",
102
+ scheme="W8A8",
103
+ ignore=["lm_head"],
104
+ dampening_frac=0.01,
105
+ )
106
+
107
+ model = SparseAutoModelForCausalLM.from_pretrained(
108
+ model_id,
109
+ device_map="auto",
110
+ )
111
+
112
+ oneshot(
113
+ model=model,
114
+ dataset=ds,
115
+ recipe=recipe,
116
+ max_seq_length=max_seq_len,
117
+ num_calibration_samples=num_samples,
118
+ )
119
+ model.save_pretrained("SmolLM-1.7B-Instruct-quantized.w8a8")
120
+ ```
121
+
122
+ ## Evaluation
123
+
124
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
125
+ ```
126
+ lm_eval \
127
+ --model vllm \
128
+ --model_args pretrained="neuralmagic/SmolLM-1.7B-Instruct-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
129
+ --tasks openllm \
130
+ --batch_size auto
131
+ ```
132
+
133
+ ### Accuracy
134
+
135
+ #### Open LLM Leaderboard evaluation scores
136
+ <table>
137
+ <tr>
138
+ <td><strong>Benchmark</strong>
139
+ </td>
140
+ <td><strong>SmolLM-1.7B-Instruct-quantized</strong>
141
+ </td>
142
+ <td><strong>SmolLM-1.7B-Instruct-quantized.w8a8 (this model)</strong>
143
+ </td>
144
+ <td><strong>Recovery</strong>
145
+ </td>
146
+ </tr>
147
+ <tr>
148
+ <td>MMLU (5-shot)
149
+ </td>
150
+ <td>28.10
151
+ </td>
152
+ <td>27.54
153
+ </td>
154
+ <td>98.0%
155
+ </td>
156
+ </tr>
157
+ <tr>
158
+ <td>ARC Challenge (25-shot)
159
+ </td>
160
+ <td>49.06
161
+ </td>
162
+ <td>48.98
163
+ </td>
164
+ <td>99.8%
165
+ </td>
166
+ </tr>
167
+ <tr>
168
+ <td>GSM-8K (5-shot, strict-match)
169
+ </td>
170
+ <td>4.93
171
+ </td>
172
+ <td>3.87
173
+ </td>
174
+ <td>78.5%
175
+ </td>
176
+ </tr>
177
+ <tr>
178
+ <td>Hellaswag (10-shot)
179
+ </td>
180
+ <td>66.96
181
+ </td>
182
+ <td>66.25
183
+ </td>
184
+ <td>98.9%
185
+ </td>
186
+ </tr>
187
+ <tr>
188
+ <td>Winogrande (5-shot)
189
+ </td>
190
+ <td>61.01
191
+ </td>
192
+ <td>60.54
193
+ </td>
194
+ <td>99.2%
195
+ </td>
196
+ </tr>
197
+ <tr>
198
+ <td>TruthfulQA (0-shot)
199
+ </td>
200
+ <td>40.48
201
+ </td>
202
+ <td>40.21
203
+ </td>
204
+ <td>99.3%
205
+ </td>
206
+ </tr>
207
+ <tr>
208
+ <td><strong>Average</strong>
209
+ </td>
210
+ <td><strong>41.76</strong>
211
+ </td>
212
+ <td><strong>41.23</strong>
213
+ </td>
214
+ <td><strong>98.7%</strong>
215
+ </td>
216
+ </tr>
217
+ </table>