File size: 10,357 Bytes
057776e cd1317b 057776e fb0a9eb 057776e 5871dad 057776e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
---
license: mit
language:
- ru
tags:
- natural-language-processing
- dh
- word2vec
---
The model is built on Leo Tolstoy's [collected works](https://github.com/tolstoydigital/TEI) and represents his individual semantics
## Preparation
All texts are converted from the TEI markup, splitted into sentences and lemmatized. Only modern orthography left in the data.
```python
import html
import os
import re
import shutil
from bs4 import BeautifulSoup
!pip install razdel # for splitting
from razdel import sentenize
from tqdm import tqdm
!git clone https://github.com/tolstoydigital/TEI.git
relevant_dirs = ['diaries', 'letters', 'notes', 'works']
path = 'TEI/reference/bibllist_works.xml' # allows to work with fiction and non fiction separately
xml = open(path).read()
soup = BeautifulSoup(xml, features="xml")
group_texts = {}
for it in soup.find_all("item"):
ref = it.find("ref")
for related in it.find_all("relatedItem"):
for ref_ana in related.find_all("ref"):
group_texts[ref_ana.text] = ref.text
prefix_texts = 'extracted_texts'
os.mkdir(prefix_texts)
if os.path.exists(prefix_texts):
shutil.rmtree(prefix_texts)
os.mkdir(prefix_texts)
# extract texts from XML
complex_texts = {}
for rel_dir in relevant_dirs:
path = os.path.join('TEI/texts', rel_dir)
for file in tqdm(sorted(os.listdir(path))):
fiction = 0
if not file.endswith('.xml'):
continue
xml = open(os.path.join(path, file)).read()
if 'Печатные варианты' in xml:
continue
nameID = file.replace('.xml', '')
soup = BeautifulSoup(xml, features="xml")
if soup.find("catRef", {"ana":"#fiction"}):
fiction = 1
s = soup.find("body")
paragraphs = []
for erase in s.find_all(["orig", "comments", "sic", "note"]):
erase.decompose()
for p in s.find_all(["p", "l"]):
paragraphs.append(html.unescape(p.text.replace('\n', ' ').strip()))
if not fiction:
with open(os.path.join(prefix_texts, rel_dir + '.txt'), 'a') as f:
for par in paragraphs:
par = re.sub(' ([.,;:!?)"»])', '\\1', par)
par = par.replace('\n', ' ')
par = par.strip()
par = re.sub('\s+', ' ', par)
par = re.sub('\[.+?\]', '', par)
for sent in sentenize(par):
f.write(list(sent)[2].strip() + '\n')
else:
if nameID in group_texts:
hyper_name = group_texts[nameID]
if hyper_name not in complex_texts:
complex_texts[hyper_name] = paragraphs
else:
complex_texts[hyper_name].extend(paragraphs)
else:
with open(os.path.join(prefix_texts, nameID + '.txt'), 'w') as f:
f.write('\n'.join(paragraphs))
for hyper_name in complex_texts:
with open(os.path.join(prefix_texts, hyper_name + '.txt'), 'w') as f:
f.write('\n'.join(complex_texts[hyper_name]))
# tagging
from pymystem3 import Mystem
pos = ['S', 'V', 'A', 'ADV']
def tagging():
m = Mystem()
for fl in os.listdir(prefix_texts):
#print(fl)
if 'mystem' in fl:
continue
with open(os.path.join(prefix_texts, fl)) as f:
text = f.read()
lines = text.split('\n')
ana_lines = []
for line in lines:
line = ' '.join(line.split()[1:])
line = line.replace('ò', 'о')
line = line.replace('è', 'е')
line = line.replace('à', 'а')
line = line.replace('ѝ', 'и')
line = line.replace('ỳ', 'у')
line = line.replace('о̀', 'о')
#line = line.replace('Изд.̀', 'издательство')
ana = []
info = m.analyze(line)
for token in info:
if "analysis" in token:
try:
analysis = token["analysis"][0]
except:
#print(token)
continue
# if "lex" in analysis:
lex = analysis["lex"]
#if 'gr' in analysis:
gr = analysis['gr']
#print(gr)
const = gr.split('=')[0]
if ',' in const:
pos = const.split(',')[0]
else:
pos = const
ana.append('{}_{}'.format(lex, pos))
ln = ' '.join(ana)
if re.search('[А-Яа-я]', ln):
ana_lines.append(ln)
with open('{}/mystem-{}'.format(prefix_texts, fl), 'w') as fw:
fw.write('\n'.join(ana_lines))
def mk_input():
inp = []
for fl in os.listdir(prefix_texts):
if not 'mystem' in fl:
continue
#print(fl)
with open(os.path.join(prefix_texts, fl)) as f:
text = f.read()
lines = text.split('\n')
for line in lines:
words = []
for w in line.split():
word = w.split('_')
if word[1] in pos:
words.append(w)
if len(words) > 1:
inp.append(' '.join(words))
with open('input.txt', 'w') as fw:
fw.write('\n'.join(inp))
tagging()
mk_input()
```
The whole code is in the `w2v-prep.ipynb` notebook.
## Models
There are 2 models in the repository. Their parameters are taen from the general language models to be comparable from rusvectores site.
Here is the code for building models:
```python
import sys
import logging
import gensim
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
pth = './input.txt'
data = gensim.models.word2vec.LineSentence(pth) # train sentence by sentence
modelLNT1 = gensim.models.Word2Vec(data, vector_size=500, window=2, min_count=2, sg=1) # comparable with web_mystem_skipgram_500_2_2015.bin
modelLNT1.save('skipgram_500_2.model') # saving
modelLNT2 = gensim.models.Word2Vec(data, vector_size=300, window=10, min_count=2, sg=0) # comparable with ruwikiruscorpora_upos_cbow_300_10_2021
modelLNT2.save('cbow_300_10.model')
```
## Usage
```python
# load models
modelLNT1 = Word2Vec.load("skipgram_500_2.model")
# most similar words viz
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set_style("darkgrid")
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
def tsnescatterplot(model, word, list_names): # stolen code
""" Plot in seaborn the results from the t-SNE dimensionality reduction algorithm of the vectors of a query word,
its list of most similar words, and a list of words.
"""
arrays = np.empty((0, 300), dtype='f')
word_labels = [word]
color_list = ['red']
# adds the vector of the query word
arrays = np.append(arrays, model.wv.__getitem__([word]), axis=0)
# gets list of most similar words
close_words = model.wv.most_similar([word])
# adds the vector for each of the closest words to the array
for wrd_score in close_words:
wrd_vector = model.wv.__getitem__([wrd_score[0]])
word_labels.append(wrd_score[0])
color_list.append('blue')
arrays = np.append(arrays, wrd_vector, axis=0)
# adds the vector for each of the words from list_names to the array
for wrd in list_names:
wrd_vector = model.wv.__getitem__([wrd])
word_labels.append(wrd)
color_list.append('green')
arrays = np.append(arrays, wrd_vector, axis=0)
# Reduces the dimensionality from 300 to 50 dimensions with PCA
reduc = PCA(n_components=20).fit_transform(arrays)
# Finds t-SNE coordinates for 2 dimensions
np.set_printoptions(suppress=True)
Y = TSNE(n_components=2, random_state=0, perplexity=15).fit_transform(reduc)
# Sets everything up to plot
df = pd.DataFrame({'x': [x for x in Y[:, 0]],
'y': [y for y in Y[:, 1]],
'words': word_labels,
'color': color_list})
fig, _ = plt.subplots()
fig.set_size_inches(9, 9)
# Basic plot
p1 = sns.regplot(data=df,
x="x",
y="y",
fit_reg=False,
marker="o",
scatter_kws={'s': 40,
'facecolors': df['color']
}
)
# Adds annotations one by one with a loop
for line in range(0, df.shape[0]):
p1.text(df["x"][line],
df['y'][line],
' ' + df["words"][line].title(),
horizontalalignment='left',
verticalalignment='bottom', size='medium',
color=df['color'][line],
weight='normal'
).set_size(15)
plt.xlim(Y[:, 0].min()-50, Y[:, 0].max()+50)
plt.ylim(Y[:, 1].min()-50, Y[:, 1].max()+50)
plt.title('t-SNE visualization for {}'.format(word.title()))
tsnescatterplot(modelLNT2, 'бог_S', [i[0] for i in modelLNT2.wv.most_similar(negative=["бог_S"])])
```
![](./god.png)
## Train data
Train corpus inclded in this repository as an `input.txt` file. It contains more than 7 mln words. For detailed explanation see Bonch-Osmolovskaya, A., Skorinkin, D., Pavlova, I., Kolbasov, M., & Orekhov, B. (2019). [Tolstoy semanticized: Constructing a digital edition for knowledge discovery](https://www.sciencedirect.com/science/article/abs/pii/S1570826818300635). *Journal of Web Semantics, 59*, 100483.
## Publication
Орехов Б. В. [Индивидуальная семантика Л. Н. Толстого в свете векторных моделей](https://human.spbstu.ru/article/2023.54.09/) // Terra Linguistica. 2023. Т. 14. No 4. С. 119–129. DOI: 10.18721/JHSS.14409
```
@article{орехов2023индивидуальная,
title={Индивидуальная семантика Л. Н. Толстого в свете векторных моделей},
author={Орехов, Б.В.},
journal={Terra Linguistica},
volume={14},
number={4},
pages={119--129},
doi={10.18721/JHSS.14409}
url={https://human.spbstu.ru/userfiles/files/articles/2023/4/119-129.pdf}
year={2023}
}
``` |