newwater commited on
Commit
9721da0
·
1 Parent(s): 0ee1a4a

Upload best PPO LunarLander-v2 agent (tuned with Optuna)

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cee1074fb6379c1d2c4efb71cee44081a00b151d397a84c9dfe24385471eb78
3
+ size 145826
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ed5ad6430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ed5ad64c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ed5ad6550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ed5ad65e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3ed5ad6670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3ed5ad6700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3ed5ad6790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ed5ad6820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3ed5ad68b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ed5ad6940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ed5ad69d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ed5ad6a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3ed5ad4360>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1540096,
47
+ "_total_timesteps": 1524455,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1674302694911545949,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVqgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzEubHVuYXJsYW5kZXIvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPlsD0RzMg9g7TUvSwUgb4H5R69oGzmuwAAAAAAAAAAOiuovvLYij9Vq3O+OZHyvn00tr45IQs+AAAAAAAAAABmRvU7Ct41u6AXcDwzImM8jg5KvOT0RT0AAIA/AACAPzNREr3cxBk+douMPYQNm74waoU8V3DFvAAAAAAAAAAAMwk3PfYsN7pyuwG1pBpBsF+CmDv1Ums0AACAPwAAgD8mPoc9y6KfPy5uyz5fz9K+ldlfPSyMEz4AAAAAAAAAAAC4c7wEuqQ/yo6GvQ927b5QyJO8i7SguwAAAAAAAAAAACgFPKnhFbye0v67kMk6uy3sND2cv6a9AACAPwAAgD9mWsu7QTW9PYb6Tj4dBHu+ZW6oPWFYqTwAAAAAAAAAAI2Zrz0J6g4+OPrIPPq/b76pcaG8oK1RPQAAAAAAAAAAjSGzPXuemLp4XEg7qWtCtv4XCrr+Qma6AAAAAAAAgD8ANhM+BW14P/YEcD7CANC+tNNUPsurqD0AAAAAAAAAAGbsmby2fWu8psehPTbLwDpJ9Bc9ldgTPgAAgD8AAIA/M4dxvGz3iDyNPxM+e3pRvkW2UzzC8JM8AAAAAAAAAACa7qU9w9RUvLuvpr00LZi9GeVQPeI5sT4AAIA/AACAPzMGjbykiQE/sr0gPaMIkL6MuRw97exSOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.010260060152644801,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVXBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz9kCQusecECUhpRSlIwBbJRNMQGMAXSUR0DTTvCfWcz7dX2UKGgGaAloD0MI2INJ8fGLb0CUhpRSlGgVTRYBaBZHQNNO8SGahHt1fZQoaAZoCWgPQwiymxn96MJyQJSGlFKUaBVL/WgWR0DTTvMMAmzCdX2UKGgGaAloD0MIEFzlCYSObkCUhpRSlGgVTQoBaBZHQNNO9s9W6sh1fZQoaAZoCWgPQwjDZKpgFFlwQJSGlFKUaBVNGwFoFkdA0078ZPVNH3V9lChoBmgJaA9DCL/VOnH5fHBAlIaUUpRoFU0cAWgWR0DTTwDSThYOdX2UKGgGaAloD0MItoDQevgibkCUhpRSlGgVTR0BaBZHQNNPBKNEPUd1fZQoaAZoCWgPQwiq8dJN4jJxQJSGlFKUaBVNAAFoFkdA008IdPtUoHV9lChoBmgJaA9DCKJhMepaLnFAlIaUUpRoFUv+aBZHQNNPDPRZ2ZB1fZQoaAZoCWgPQwgA/ilV4tNwQJSGlFKUaBVNAAFoFkdA008Oh/RVqHV9lChoBmgJaA9DCERQNXr1q3JAlIaUUpRoFU0GAWgWR0DTTycc3l0YdX2UKGgGaAloD0MIMnVXdoFZckCUhpRSlGgVTRoBaBZHQNNPJ+g13t91fZQoaAZoCWgPQwgfoWZI1f5xQJSGlFKUaBVL8mgWR0DTTypvjwQUdX2UKGgGaAloD0MI/FQVGkgacUCUhpRSlGgVS+xoFkdA008rRpDeCXV9lChoBmgJaA9DCJ6Xio3583JAlIaUUpRoFU0NAWgWR0DTTy6osI3SdX2UKGgGaAloD0MI2zNLAhSPckCUhpRSlGgVS+doFkdA008xC2tuDXV9lChoBmgJaA9DCHA/4IGBcG1AlIaUUpRoFU0IAWgWR0DTTzTnhbW3dX2UKGgGaAloD0MICwith+8QckCUhpRSlGgVTRQBaBZHQNNPNU1AJLN1fZQoaAZoCWgPQwiXVG03wQ5xQJSGlFKUaBVNKgFoFkdA00840o0ALnV9lChoBmgJaA9DCEHxY8wdqnFAlIaUUpRoFU0AAWgWR0DTT0FWNm16dX2UKGgGaAloD0MI4C9mS9aRcUCUhpRSlGgVTRQBaBZHQNNPQdd/rjZ1fZQoaAZoCWgPQwgAdJgvL0dvQJSGlFKUaBVL8mgWR0DTT0W07bL2dX2UKGgGaAloD0MIKa+V0J3tcECUhpRSlGgVTQoBaBZHQNNPR4CZF5R1fZQoaAZoCWgPQwgP7s7abbZjQJSGlFKUaBVN6ANoFkdA009HurZJ1HV9lChoBmgJaA9DCAG/RpLgMnJAlIaUUpRoFUv5aBZHQNNPTFqBVdZ1fZQoaAZoCWgPQwjR56OM+LdyQJSGlFKUaBVNKgFoFkdA009UyIYWL3V9lChoBmgJaA9DCFJgAUwZpVFAlIaUUpRoFUu5aBZHQNNPXhU3n6l1fZQoaAZoCWgPQwikcD0KF2pxQJSGlFKUaBVL8GgWR0DTT1+brkbQdX2UKGgGaAloD0MIKLfte9TNTkCUhpRSlGgVS9xoFkdA009gjxkNF3V9lChoBmgJaA9DCHQLXYlAUnFAlIaUUpRoFU0DAWgWR0DTT2a8mKIjdX2UKGgGaAloD0MIyF7v/vg0c0CUhpRSlGgVTQ8BaBZHQNNPaNBrvb51fZQoaAZoCWgPQwiWWYRi63JxQJSGlFKUaBVL9GgWR0DTT2wdq+JxdX2UKGgGaAloD0MIey5Tk2AfckCUhpRSlGgVTSwBaBZHQNNPbMTFl051fZQoaAZoCWgPQwhmguFcA/NyQJSGlFKUaBVNCQFoFkdA009s94eLenV9lChoBmgJaA9DCB2Txf3H0XBAlIaUUpRoFU0GAWgWR0DTT3L8+A3DdX2UKGgGaAloD0MImS1ZFSE5c0CUhpRSlGgVS/loFkdA0094e8f3e3V9lChoBmgJaA9DCBsRjINLJHNAlIaUUpRoFUv1aBZHQNNPe0AtFrl1fZQoaAZoCWgPQwiu9NpsbENyQJSGlFKUaBVL+mgWR0DTT35EUj9odX2UKGgGaAloD0MIBHRfzixWcUCUhpRSlGgVTSMBaBZHQNNPgZSWJJp1fZQoaAZoCWgPQwjTg4JSdPVxQJSGlFKUaBVNDgFoFkdA00+IB1LamHV9lChoBmgJaA9DCAd5PZiUjHNAlIaUUpRoFU0qAWgWR0DTT4j0Dlo2dX2UKGgGaAloD0MImIdM+dCucECUhpRSlGgVS+poFkdA00+Jbi6xxHV9lChoBmgJaA9DCA9j0t9LjXJAlIaUUpRoFU0BAWgWR0DTUDd/gBLgdX2UKGgGaAloD0MIqYjTSfa7cECUhpRSlGgVS/JoFkdA01A+cN6PbXV9lChoBmgJaA9DCO58PzWesXBAlIaUUpRoFU0xAWgWR0DTUEMHfMwDdX2UKGgGaAloD0MI8ztNZjz0b0CUhpRSlGgVS/ZoFkdA01BDXgLqlnV9lChoBmgJaA9DCKpJ8Ia0ZXFAlIaUUpRoFU0sAWgWR0DTUERe2NNrdX2UKGgGaAloD0MIoG6gwDszcUCUhpRSlGgVS/toFkdA01BFb+tKZnV9lChoBmgJaA9DCDKSPUINuXFAlIaUUpRoFU0dAWgWR0DTUEbsMRYjdX2UKGgGaAloD0MI9RQ5RJx2ckCUhpRSlGgVS/NoFkdA01BJlHSWq3V9lChoBmgJaA9DCD2CGymbT3JAlIaUUpRoFU0XAWgWR0DTUErTspocdX2UKGgGaAloD0MIP+PCgVCRcUCUhpRSlGgVTRoBaBZHQNNQXPdyksV1fZQoaAZoCWgPQwgZj1IJzztyQJSGlFKUaBVL7WgWR0DTUF54keIVdX2UKGgGaAloD0MIDhKifAG4ckCUhpRSlGgVS/poFkdA01BgLTQVsXV9lChoBmgJaA9DCKZiY16HknFAlIaUUpRoFU1AAWgWR0DTUGMDaGpNdX2UKGgGaAloD0MIOIWVCqo5cUCUhpRSlGgVTRkBaBZHQNNQaHg9/z91fZQoaAZoCWgPQwjQm4pUGFNyQJSGlFKUaBVNPAFoFkdA01BoyhSLqHV9lChoBmgJaA9DCP32deCc10tAlIaUUpRoFUvraBZHQNNQbgPRRdh1fZQoaAZoCWgPQwh4DI/9LPBRQJSGlFKUaBVL62gWR0DTUHQYm9g4dX2UKGgGaAloD0MI7BNAMXIuckCUhpRSlGgVTQIBaBZHQNNQfuF10T11fZQoaAZoCWgPQwhgWtQnOWNsQJSGlFKUaBVL+mgWR0DTUH97Z39rdX2UKGgGaAloD0MItam6R7ZHb0CUhpRSlGgVTQYBaBZHQNNQhEC/47B1fZQoaAZoCWgPQwhOmgZF86FvQJSGlFKUaBVNHwFoFkdA01CHZ+QU6HV9lChoBmgJaA9DCNPe4AtTm3FAlIaUUpRoFU0uAWgWR0DTUIpRYRukdX2UKGgGaAloD0MI91rQe+Mhb0CUhpRSlGgVTQoBaBZHQNNQildTo+x1fZQoaAZoCWgPQwi5cCAki11vQJSGlFKUaBVNKgFoFkdA01CQCrtE5XV9lChoBmgJaA9DCHAlOzYC72xAlIaUUpRoFU0cAWgWR0DTUKZHSWqtdX2UKGgGaAloD0MIQ1Thz3BOcUCUhpRSlGgVTSYBaBZHQNNQpx8UmD11fZQoaAZoCWgPQwhIUWfuoctxQJSGlFKUaBVL/2gWR0DTUKg/pt78dX2UKGgGaAloD0MIfzLGh1mPc0CUhpRSlGgVTTMBaBZHQNNQqPzFuNx1fZQoaAZoCWgPQwijrrX3KdZvQJSGlFKUaBVL9GgWR0DTUKtkjHGTdX2UKGgGaAloD0MIYRdFD7zQcUCUhpRSlGgVTSIBaBZHQNNQsFId2gZ1fZQoaAZoCWgPQwgT8kHPZi9xQJSGlFKUaBVNQAFoFkdA01CyIYm9hHV9lChoBmgJaA9DCD57LlMTS25AlIaUUpRoFU0JAWgWR0DTULaSjgyedX2UKGgGaAloD0MImgrxSHxgcECUhpRSlGgVS95oFkdA01C69oexOnV9lChoBmgJaA9DCMh5/x8nwW5AlIaUUpRoFU0AAWgWR0DTUL4eS0SidX2UKGgGaAloD0MIBr03hgC2bkCUhpRSlGgVTQMBaBZHQNNQvz7di2F1fZQoaAZoCWgPQwhpjxfS4YhuQJSGlFKUaBVNBQFoFkdA01DJvXK8tnV9lChoBmgJaA9DCKg65Ga4aHFAlIaUUpRoFU0NAWgWR0DTUMwa72+PdX2UKGgGaAloD0MIJjj1geTAbkCUhpRSlGgVTRoBaBZHQNNQzMD0UXZ1fZQoaAZoCWgPQwg+kpIehupvQJSGlFKUaBVNCgFoFkdA01DRSc9W63V9lChoBmgJaA9DCI9VSs80hXBAlIaUUpRoFUvoaBZHQNNQ4EzKs+51fZQoaAZoCWgPQwiNX3glSUVwQJSGlFKUaBVL/mgWR0DTUOp+BpYcdX2UKGgGaAloD0MI7ZxmgXYrbECUhpRSlGgVTRYBaBZHQNNQ67b5/LF1fZQoaAZoCWgPQwi4dw36ksxwQJSGlFKUaBVNIgFoFkdA01Dv4jKPn3V9lChoBmgJaA9DCPEr1nCRo25AlIaUUpRoFUv5aBZHQNNQ8RS5y2h1fZQoaAZoCWgPQwhSnKOODt5wQJSGlFKUaBVNGAFoFkdA01D3ixVyWHV9lChoBmgJaA9DCHQJh97it1BAlIaUUpRoFUu5aBZHQNNQ/XWjGkx1fZQoaAZoCWgPQwjCMjZ0835wQJSGlFKUaBVNBwFoFkdA01D+9roGIXV9lChoBmgJaA9DCMTSwI+qWHFAlIaUUpRoFUv9aBZHQNNQ/8U7CBR1fZQoaAZoCWgPQwj0UNuG0eNxQJSGlFKUaBVNJAFoFkdA01EB2L5yl3V9lChoBmgJaA9DCPikEwmmKnBAlIaUUpRoFU0IAWgWR0DTUQPDfm9ydX2UKGgGaAloD0MINSVZh6OecECUhpRSlGgVS/NoFkdA01EJLPD503V9lChoBmgJaA9DCBYYsrrVrmZAlIaUUpRoFU3oA2gWR0DTUQp8PWhAdX2UKGgGaAloD0MIFR+fkB19ckCUhpRSlGgVS/JoFkdA01EKy0rsjXV9lChoBmgJaA9DCNDVVuwvTXBAlIaUUpRoFU0AAWgWR0DTURIeIVM3dX2UKGgGaAloD0MITdwqiEFQcECUhpRSlGgVS/9oFkdA01EfzeoDPnV9lChoBmgJaA9DCNeJy/HKL3BAlIaUUpRoFUvvaBZHQNNRJVv60pp1fZQoaAZoCWgPQwhl/WZi+jFzQJSGlFKUaBVNAwFoFkdA01Epa5f+j3V9lChoBmgJaA9DCDfdskP8NnFAlIaUUpRoFUv1aBZHQNNRK71mJ3x1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 376,
80
+ "n_steps": 1024,
81
+ "gamma": 0.998604713037232,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVqgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzEubHVuYXJsYW5kZXIvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9790372ecd3830eef2936b6fc6d5701cd2d92011db40d76fea34d00996e2f81b
3
+ size 85735
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:079df1b812e052b7658a7c6c2748b956ef72d3cc3d5a023330da9cc2f6c13514
3
+ size 44075
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.13.0-30-generic-x86_64-with-glibc2.29 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.8.1+cu102
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.37 +/- 23.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ed5ad6430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ed5ad64c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ed5ad6550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ed5ad65e0>", "_build": "<function ActorCriticPolicy._build at 0x7f3ed5ad6670>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ed5ad6700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3ed5ad6790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ed5ad6820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ed5ad68b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ed5ad6940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ed5ad69d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ed5ad6a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3ed5ad4360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1540096, "_total_timesteps": 1524455, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674302694911545949, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzEubHVuYXJsYW5kZXIvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPlsD0RzMg9g7TUvSwUgb4H5R69oGzmuwAAAAAAAAAAOiuovvLYij9Vq3O+OZHyvn00tr45IQs+AAAAAAAAAABmRvU7Ct41u6AXcDwzImM8jg5KvOT0RT0AAIA/AACAPzNREr3cxBk+douMPYQNm74waoU8V3DFvAAAAAAAAAAAMwk3PfYsN7pyuwG1pBpBsF+CmDv1Ums0AACAPwAAgD8mPoc9y6KfPy5uyz5fz9K+ldlfPSyMEz4AAAAAAAAAAAC4c7wEuqQ/yo6GvQ927b5QyJO8i7SguwAAAAAAAAAAACgFPKnhFbye0v67kMk6uy3sND2cv6a9AACAPwAAgD9mWsu7QTW9PYb6Tj4dBHu+ZW6oPWFYqTwAAAAAAAAAAI2Zrz0J6g4+OPrIPPq/b76pcaG8oK1RPQAAAAAAAAAAjSGzPXuemLp4XEg7qWtCtv4XCrr+Qma6AAAAAAAAgD8ANhM+BW14P/YEcD7CANC+tNNUPsurqD0AAAAAAAAAAGbsmby2fWu8psehPTbLwDpJ9Bc9ldgTPgAAgD8AAIA/M4dxvGz3iDyNPxM+e3pRvkW2UzzC8JM8AAAAAAAAAACa7qU9w9RUvLuvpr00LZi9GeVQPeI5sT4AAIA/AACAPzMGjbykiQE/sr0gPaMIkL6MuRw97exSOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010260060152644801, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz9kCQusecECUhpRSlIwBbJRNMQGMAXSUR0DTTvCfWcz7dX2UKGgGaAloD0MI2INJ8fGLb0CUhpRSlGgVTRYBaBZHQNNO8SGahHt1fZQoaAZoCWgPQwiymxn96MJyQJSGlFKUaBVL/WgWR0DTTvMMAmzCdX2UKGgGaAloD0MIEFzlCYSObkCUhpRSlGgVTQoBaBZHQNNO9s9W6sh1fZQoaAZoCWgPQwjDZKpgFFlwQJSGlFKUaBVNGwFoFkdA0078ZPVNH3V9lChoBmgJaA9DCL/VOnH5fHBAlIaUUpRoFU0cAWgWR0DTTwDSThYOdX2UKGgGaAloD0MItoDQevgibkCUhpRSlGgVTR0BaBZHQNNPBKNEPUd1fZQoaAZoCWgPQwiq8dJN4jJxQJSGlFKUaBVNAAFoFkdA008IdPtUoHV9lChoBmgJaA9DCKJhMepaLnFAlIaUUpRoFUv+aBZHQNNPDPRZ2ZB1fZQoaAZoCWgPQwgA/ilV4tNwQJSGlFKUaBVNAAFoFkdA008Oh/RVqHV9lChoBmgJaA9DCERQNXr1q3JAlIaUUpRoFU0GAWgWR0DTTycc3l0YdX2UKGgGaAloD0MIMnVXdoFZckCUhpRSlGgVTRoBaBZHQNNPJ+g13t91fZQoaAZoCWgPQwgfoWZI1f5xQJSGlFKUaBVL8mgWR0DTTypvjwQUdX2UKGgGaAloD0MI/FQVGkgacUCUhpRSlGgVS+xoFkdA008rRpDeCXV9lChoBmgJaA9DCJ6Xio3583JAlIaUUpRoFU0NAWgWR0DTTy6osI3SdX2UKGgGaAloD0MI2zNLAhSPckCUhpRSlGgVS+doFkdA008xC2tuDXV9lChoBmgJaA9DCHA/4IGBcG1AlIaUUpRoFU0IAWgWR0DTTzTnhbW3dX2UKGgGaAloD0MICwith+8QckCUhpRSlGgVTRQBaBZHQNNPNU1AJLN1fZQoaAZoCWgPQwiXVG03wQ5xQJSGlFKUaBVNKgFoFkdA00840o0ALnV9lChoBmgJaA9DCEHxY8wdqnFAlIaUUpRoFU0AAWgWR0DTT0FWNm16dX2UKGgGaAloD0MI4C9mS9aRcUCUhpRSlGgVTRQBaBZHQNNPQdd/rjZ1fZQoaAZoCWgPQwgAdJgvL0dvQJSGlFKUaBVL8mgWR0DTT0W07bL2dX2UKGgGaAloD0MIKa+V0J3tcECUhpRSlGgVTQoBaBZHQNNPR4CZF5R1fZQoaAZoCWgPQwgP7s7abbZjQJSGlFKUaBVN6ANoFkdA009HurZJ1HV9lChoBmgJaA9DCAG/RpLgMnJAlIaUUpRoFUv5aBZHQNNPTFqBVdZ1fZQoaAZoCWgPQwjR56OM+LdyQJSGlFKUaBVNKgFoFkdA009UyIYWL3V9lChoBmgJaA9DCFJgAUwZpVFAlIaUUpRoFUu5aBZHQNNPXhU3n6l1fZQoaAZoCWgPQwikcD0KF2pxQJSGlFKUaBVL8GgWR0DTT1+brkbQdX2UKGgGaAloD0MIKLfte9TNTkCUhpRSlGgVS9xoFkdA009gjxkNF3V9lChoBmgJaA9DCHQLXYlAUnFAlIaUUpRoFU0DAWgWR0DTT2a8mKIjdX2UKGgGaAloD0MIyF7v/vg0c0CUhpRSlGgVTQ8BaBZHQNNPaNBrvb51fZQoaAZoCWgPQwiWWYRi63JxQJSGlFKUaBVL9GgWR0DTT2wdq+JxdX2UKGgGaAloD0MIey5Tk2AfckCUhpRSlGgVTSwBaBZHQNNPbMTFl051fZQoaAZoCWgPQwhmguFcA/NyQJSGlFKUaBVNCQFoFkdA009s94eLenV9lChoBmgJaA9DCB2Txf3H0XBAlIaUUpRoFU0GAWgWR0DTT3L8+A3DdX2UKGgGaAloD0MImS1ZFSE5c0CUhpRSlGgVS/loFkdA0094e8f3e3V9lChoBmgJaA9DCBsRjINLJHNAlIaUUpRoFUv1aBZHQNNPe0AtFrl1fZQoaAZoCWgPQwiu9NpsbENyQJSGlFKUaBVL+mgWR0DTT35EUj9odX2UKGgGaAloD0MIBHRfzixWcUCUhpRSlGgVTSMBaBZHQNNPgZSWJJp1fZQoaAZoCWgPQwjTg4JSdPVxQJSGlFKUaBVNDgFoFkdA00+IB1LamHV9lChoBmgJaA9DCAd5PZiUjHNAlIaUUpRoFU0qAWgWR0DTT4j0Dlo2dX2UKGgGaAloD0MImIdM+dCucECUhpRSlGgVS+poFkdA00+Jbi6xxHV9lChoBmgJaA9DCA9j0t9LjXJAlIaUUpRoFU0BAWgWR0DTUDd/gBLgdX2UKGgGaAloD0MIqYjTSfa7cECUhpRSlGgVS/JoFkdA01A+cN6PbXV9lChoBmgJaA9DCO58PzWesXBAlIaUUpRoFU0xAWgWR0DTUEMHfMwDdX2UKGgGaAloD0MI8ztNZjz0b0CUhpRSlGgVS/ZoFkdA01BDXgLqlnV9lChoBmgJaA9DCKpJ8Ia0ZXFAlIaUUpRoFU0sAWgWR0DTUERe2NNrdX2UKGgGaAloD0MIoG6gwDszcUCUhpRSlGgVS/toFkdA01BFb+tKZnV9lChoBmgJaA9DCDKSPUINuXFAlIaUUpRoFU0dAWgWR0DTUEbsMRYjdX2UKGgGaAloD0MI9RQ5RJx2ckCUhpRSlGgVS/NoFkdA01BJlHSWq3V9lChoBmgJaA9DCD2CGymbT3JAlIaUUpRoFU0XAWgWR0DTUErTspocdX2UKGgGaAloD0MIP+PCgVCRcUCUhpRSlGgVTRoBaBZHQNNQXPdyksV1fZQoaAZoCWgPQwgZj1IJzztyQJSGlFKUaBVL7WgWR0DTUF54keIVdX2UKGgGaAloD0MIDhKifAG4ckCUhpRSlGgVS/poFkdA01BgLTQVsXV9lChoBmgJaA9DCKZiY16HknFAlIaUUpRoFU1AAWgWR0DTUGMDaGpNdX2UKGgGaAloD0MIOIWVCqo5cUCUhpRSlGgVTRkBaBZHQNNQaHg9/z91fZQoaAZoCWgPQwjQm4pUGFNyQJSGlFKUaBVNPAFoFkdA01BoyhSLqHV9lChoBmgJaA9DCP32deCc10tAlIaUUpRoFUvraBZHQNNQbgPRRdh1fZQoaAZoCWgPQwh4DI/9LPBRQJSGlFKUaBVL62gWR0DTUHQYm9g4dX2UKGgGaAloD0MI7BNAMXIuckCUhpRSlGgVTQIBaBZHQNNQfuF10T11fZQoaAZoCWgPQwhgWtQnOWNsQJSGlFKUaBVL+mgWR0DTUH97Z39rdX2UKGgGaAloD0MItam6R7ZHb0CUhpRSlGgVTQYBaBZHQNNQhEC/47B1fZQoaAZoCWgPQwhOmgZF86FvQJSGlFKUaBVNHwFoFkdA01CHZ+QU6HV9lChoBmgJaA9DCNPe4AtTm3FAlIaUUpRoFU0uAWgWR0DTUIpRYRukdX2UKGgGaAloD0MI91rQe+Mhb0CUhpRSlGgVTQoBaBZHQNNQildTo+x1fZQoaAZoCWgPQwi5cCAki11vQJSGlFKUaBVNKgFoFkdA01CQCrtE5XV9lChoBmgJaA9DCHAlOzYC72xAlIaUUpRoFU0cAWgWR0DTUKZHSWqtdX2UKGgGaAloD0MIQ1Thz3BOcUCUhpRSlGgVTSYBaBZHQNNQpx8UmD11fZQoaAZoCWgPQwhIUWfuoctxQJSGlFKUaBVL/2gWR0DTUKg/pt78dX2UKGgGaAloD0MIfzLGh1mPc0CUhpRSlGgVTTMBaBZHQNNQqPzFuNx1fZQoaAZoCWgPQwijrrX3KdZvQJSGlFKUaBVL9GgWR0DTUKtkjHGTdX2UKGgGaAloD0MIYRdFD7zQcUCUhpRSlGgVTSIBaBZHQNNQsFId2gZ1fZQoaAZoCWgPQwgT8kHPZi9xQJSGlFKUaBVNQAFoFkdA01CyIYm9hHV9lChoBmgJaA9DCD57LlMTS25AlIaUUpRoFU0JAWgWR0DTULaSjgyedX2UKGgGaAloD0MImgrxSHxgcECUhpRSlGgVS95oFkdA01C69oexOnV9lChoBmgJaA9DCMh5/x8nwW5AlIaUUpRoFU0AAWgWR0DTUL4eS0SidX2UKGgGaAloD0MIBr03hgC2bkCUhpRSlGgVTQMBaBZHQNNQvz7di2F1fZQoaAZoCWgPQwhpjxfS4YhuQJSGlFKUaBVNBQFoFkdA01DJvXK8tnV9lChoBmgJaA9DCKg65Ga4aHFAlIaUUpRoFU0NAWgWR0DTUMwa72+PdX2UKGgGaAloD0MIJjj1geTAbkCUhpRSlGgVTRoBaBZHQNNQzMD0UXZ1fZQoaAZoCWgPQwg+kpIehupvQJSGlFKUaBVNCgFoFkdA01DRSc9W63V9lChoBmgJaA9DCI9VSs80hXBAlIaUUpRoFUvoaBZHQNNQ4EzKs+51fZQoaAZoCWgPQwiNX3glSUVwQJSGlFKUaBVL/mgWR0DTUOp+BpYcdX2UKGgGaAloD0MI7ZxmgXYrbECUhpRSlGgVTRYBaBZHQNNQ67b5/LF1fZQoaAZoCWgPQwi4dw36ksxwQJSGlFKUaBVNIgFoFkdA01Dv4jKPn3V9lChoBmgJaA9DCPEr1nCRo25AlIaUUpRoFUv5aBZHQNNQ8RS5y2h1fZQoaAZoCWgPQwhSnKOODt5wQJSGlFKUaBVNGAFoFkdA01D3ixVyWHV9lChoBmgJaA9DCHQJh97it1BAlIaUUpRoFUu5aBZHQNNQ/XWjGkx1fZQoaAZoCWgPQwjCMjZ0835wQJSGlFKUaBVNBwFoFkdA01D+9roGIXV9lChoBmgJaA9DCMTSwI+qWHFAlIaUUpRoFUv9aBZHQNNQ/8U7CBR1fZQoaAZoCWgPQwj0UNuG0eNxQJSGlFKUaBVNJAFoFkdA01EB2L5yl3V9lChoBmgJaA9DCPikEwmmKnBAlIaUUpRoFU0IAWgWR0DTUQPDfm9ydX2UKGgGaAloD0MINSVZh6OecECUhpRSlGgVS/NoFkdA01EJLPD503V9lChoBmgJaA9DCBYYsrrVrmZAlIaUUpRoFU3oA2gWR0DTUQp8PWhAdX2UKGgGaAloD0MIFR+fkB19ckCUhpRSlGgVS/JoFkdA01EKy0rsjXV9lChoBmgJaA9DCNDVVuwvTXBAlIaUUpRoFU0AAWgWR0DTURIeIVM3dX2UKGgGaAloD0MITdwqiEFQcECUhpRSlGgVS/9oFkdA01EfzeoDPnV9lChoBmgJaA9DCNeJy/HKL3BAlIaUUpRoFUvvaBZHQNNRJVv60pp1fZQoaAZoCWgPQwhl/WZi+jFzQJSGlFKUaBVNAwFoFkdA01Epa5f+j3V9lChoBmgJaA9DCDfdskP8NnFAlIaUUpRoFUv1aBZHQNNRK71mJ3x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 376, "n_steps": 1024, "gamma": 0.998604713037232, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVqgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzEubHVuYXJsYW5kZXIvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-30-generic-x86_64-with-glibc2.29 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.8.1+cu102", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (229 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.3727785550214, "std_reward": 23.85960366546086, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T21:23:15.558525"}