ngxson
commited on
Commit
·
ae1a83e
1
Parent(s):
e108a80
init
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- README.md +63 -0
- added_tokens.json +6 -0
- checkpoint-300/README.md +204 -0
- checkpoint-300/adapter_config.json +33 -0
- checkpoint-300/adapter_model.safetensors +3 -0
- checkpoint-300/optimizer.pt +3 -0
- checkpoint-300/rng_state.pth +3 -0
- checkpoint-300/scheduler.pt +3 -0
- checkpoint-300/trainer_state.json +1821 -0
- checkpoint-300/training_args.bin +3 -0
- config.json +26 -0
- finetune.py +133 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- run.py +64 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +80 -0
- vistral-7b-chatml-Q4_K_M.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gguf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.ipynb_checkpoints
|
README.md
CHANGED
@@ -1,3 +1,66 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- vi
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- LLMs
|
7 |
+
- NLP
|
8 |
+
- Vietnamese
|
9 |
license: mit
|
10 |
---
|
11 |
+
|
12 |
+
## Model Description
|
13 |
+
|
14 |
+
This model is finetuned from [Viet-Mistral/Vistral-7B-Chat](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat). The dataset is taken from [bkai-foundation-models/vi-self-chat-sharegpt-format](https://huggingface.co/datasets/bkai-foundation-models/vi-self-chat-sharegpt-format)
|
15 |
+
|
16 |
+
This is a **low rank** finetune to add support for chatml template. While the template does not affect model performance, it would be nice to support chatml since most of models based on Mistral already using it.
|
17 |
+
|
18 |
+
The format looks like this:
|
19 |
+
|
20 |
+
```
|
21 |
+
<|im_start|>system
|
22 |
+
Provide some context and/or instructions to the model.
|
23 |
+
<|im_end|>
|
24 |
+
<|im_start|>user
|
25 |
+
The user’s message goes here
|
26 |
+
<|im_end|>
|
27 |
+
<|im_start|>assistant
|
28 |
+
```
|
29 |
+
|
30 |
+
## How to use it
|
31 |
+
|
32 |
+
The recommended way is to use the GGUF `vistral-7b-chatml-Q4_K_M.gguf` file included in this repository. Run it via llama.cpp (remember to pass `-cml` argument to use chatml template)
|
33 |
+
|
34 |
+
Run the `python3 run.py` inside this repository to try the model using transformers library. You may need to change some params inside in order to make it work.
|
35 |
+
|
36 |
+
This is an example of a conversation using llama.cpp:
|
37 |
+
|
38 |
+
- <|im_start|>system
|
39 |
+
- Bạn là một trợ lí Tiếng Việt nhiệt tình và trung thực.<|im_end|>
|
40 |
+
- <|im_start|>user
|
41 |
+
- > xin chào
|
42 |
+
- Tôi là một trợ lý AI được tạo ra để hỗ trợ con người. Bạn có câu hỏi gì về chủ đề nào đó?<|im_end|>
|
43 |
+
- > trợ lý AI là gì? bạn giải thích được không?
|
44 |
+
Trợ lý AI là một chương trình máy tính sử dụng trí tuệ nhân tạo và học máy để hỗ trợ con người trong nhiều công việc khác nhau. Nó có thể hiểu và xử lý ngôn ngữ tự nhiên, nhận biết hình ảnh và âm thanh cũng như đưa ra các đề xuất hay câu trả lời phù hợp cho các yêu cầu của bạn.<|im_end|>
|
45 |
+
- > ồ, cảm ơn, vậy bạn có thể làm gì?
|
46 |
+
- Tôi được thiết kế để giúp đỡ con người trong nhiều công việc như giải đáp các câu hỏi, trả lời những vấn đề liên quan đến cuộc sống hàng ngày của họ. Tôi cũng hỗ trợ nghiên cứu và phân tích dữ liệu để đưa ra dự đoán hay tư vấn cho doanh nghiệp hoặc cá nhân.<|im_end|>
|
47 |
+
- > tức là sao?
|
48 |
+
- Ví dụ, nếu bạn đang thắc mắc về một chủ đề nào đó và không biết phải bắt đầu tìm kiếm ở đâu hay làm thế nào để hiểu rõ hơn về nó thì tôi có thể giúp bạn. Tôi cũng có khả năng đọc và phân tích dữ liệu từ nhiều nguồn khác nhau như các tài liệu nghiên cứu khoa học hoặc thông tin trên mạng xã hội, sau đó đưa ra những giải thích chi tiết cho vấn đề của bạn.<|im_end|>
|
49 |
+
|
50 |
+
## Training
|
51 |
+
|
52 |
+
You can also look at the training code in the `finetune.py` file.
|
53 |
+
|
54 |
+
For tokenizer, I changed these things:
|
55 |
+
- Token `[INST]` to `<|im_start|>`, make it become special token
|
56 |
+
- Token `[/INST]` to `<|im_end|>`, make it become special token
|
57 |
+
- Change to `eos_token` to `<|im_end|>`
|
58 |
+
- Update `chat_template` to chatml, taken from [this example](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B/blob/main/tokenizer_config.json#L52)
|
59 |
+
|
60 |
+
Additionally, there is a checkpoint file in my repository if you want to merge the LORA yourself.
|
61 |
+
|
62 |
+
## More information
|
63 |
+
|
64 |
+
Disclaimer: I'm not expert in machine learning, my background is from cybersecurity so the making of this model is a "hobby" to me. Training is done using a VPS on Google Cloud, I paid with my own money.
|
65 |
+
|
66 |
+
If you want to discuss, feel free to contact me at `contact at ngxson dot com` - [ngxson.com](https://ngxson.com)
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<</SYS>>": 38366,
|
3 |
+
"<<SYS>>": 38365,
|
4 |
+
"<|im_start|>": 38367,
|
5 |
+
"<|im_end|>": 38368
|
6 |
+
}
|
checkpoint-300/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Viet-Mistral/Vistral-7B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.2.dev0
|
checkpoint-300/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Viet-Mistral/Vistral-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 8,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"up_proj",
|
23 |
+
"q_proj",
|
24 |
+
"k_proj",
|
25 |
+
"lm_head",
|
26 |
+
"down_proj",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"gate_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-300/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35452d317067e2c87ec9c0ec541c3a9c3569b3c15edf800fbea080eb2b2b3962
|
3 |
+
size 713943216
|
checkpoint-300/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c06e8ae3c989553150fc70927243567b7688769922b4c0fff1a413f9e439af
|
3 |
+
size 44394974
|
checkpoint-300/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30fd4d5b393e321127cefeb791cfae79a3150ea1cd99a0f01213b4f9ec6bb389
|
3 |
+
size 14244
|
checkpoint-300/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b8ed8d7b910c26a001639a37e3b754544dfa86d3e83b3e64170b5efa202aaf8
|
3 |
+
size 1064
|
checkpoint-300/trainer_state.json
ADDED
@@ -0,0 +1,1821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.5,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 300,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 2.5e-05,
|
14 |
+
"loss": 2.6897,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 2.4968710888610763e-05,
|
20 |
+
"loss": 2.6671,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 2.493742177722153e-05,
|
26 |
+
"loss": 2.5698,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.02,
|
31 |
+
"learning_rate": 2.490613266583229e-05,
|
32 |
+
"loss": 2.0954,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"learning_rate": 2.4874843554443056e-05,
|
38 |
+
"loss": 1.8796,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.03,
|
43 |
+
"learning_rate": 2.484355444305382e-05,
|
44 |
+
"loss": 1.7986,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04,
|
49 |
+
"learning_rate": 2.4812265331664584e-05,
|
50 |
+
"loss": 1.7025,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04,
|
55 |
+
"learning_rate": 2.4780976220275346e-05,
|
56 |
+
"loss": 1.6202,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.04,
|
61 |
+
"learning_rate": 2.4749687108886108e-05,
|
62 |
+
"loss": 1.4594,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.05,
|
67 |
+
"learning_rate": 2.4718397997496874e-05,
|
68 |
+
"loss": 1.1673,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.06,
|
73 |
+
"learning_rate": 2.4687108886107636e-05,
|
74 |
+
"loss": 1.2507,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.06,
|
79 |
+
"learning_rate": 2.46558197747184e-05,
|
80 |
+
"loss": 1.2693,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.07,
|
85 |
+
"learning_rate": 2.4624530663329163e-05,
|
86 |
+
"loss": 1.3959,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.07,
|
91 |
+
"learning_rate": 2.459324155193993e-05,
|
92 |
+
"loss": 1.2798,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.07,
|
97 |
+
"learning_rate": 2.456195244055069e-05,
|
98 |
+
"loss": 1.1193,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.08,
|
103 |
+
"learning_rate": 2.4530663329161453e-05,
|
104 |
+
"loss": 1.1838,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.09,
|
109 |
+
"learning_rate": 2.449937421777222e-05,
|
110 |
+
"loss": 1.0905,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.09,
|
115 |
+
"learning_rate": 2.446808510638298e-05,
|
116 |
+
"loss": 1.0863,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.1,
|
121 |
+
"learning_rate": 2.4436795994993742e-05,
|
122 |
+
"loss": 1.1153,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.1,
|
127 |
+
"learning_rate": 2.4405506883604508e-05,
|
128 |
+
"loss": 1.0519,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.1,
|
133 |
+
"learning_rate": 2.437421777221527e-05,
|
134 |
+
"loss": 1.0254,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.11,
|
139 |
+
"learning_rate": 2.4342928660826032e-05,
|
140 |
+
"loss": 1.15,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.12,
|
145 |
+
"learning_rate": 2.4311639549436798e-05,
|
146 |
+
"loss": 0.999,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.12,
|
151 |
+
"learning_rate": 2.428035043804756e-05,
|
152 |
+
"loss": 0.9753,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.12,
|
157 |
+
"learning_rate": 2.4249061326658322e-05,
|
158 |
+
"loss": 0.9843,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.13,
|
163 |
+
"learning_rate": 2.4217772215269087e-05,
|
164 |
+
"loss": 0.8658,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.14,
|
169 |
+
"learning_rate": 2.418648310387985e-05,
|
170 |
+
"loss": 0.8473,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.14,
|
175 |
+
"learning_rate": 2.4155193992490615e-05,
|
176 |
+
"loss": 0.9926,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.14,
|
181 |
+
"learning_rate": 2.4123904881101377e-05,
|
182 |
+
"loss": 1.0976,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.15,
|
187 |
+
"learning_rate": 2.409261576971214e-05,
|
188 |
+
"loss": 1.0307,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.15,
|
193 |
+
"learning_rate": 2.4061326658322904e-05,
|
194 |
+
"loss": 0.9448,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.16,
|
199 |
+
"learning_rate": 2.4030037546933667e-05,
|
200 |
+
"loss": 0.9706,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.17,
|
205 |
+
"learning_rate": 2.3998748435544432e-05,
|
206 |
+
"loss": 1.0063,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.17,
|
211 |
+
"learning_rate": 2.3967459324155194e-05,
|
212 |
+
"loss": 0.9862,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.17,
|
217 |
+
"learning_rate": 2.393617021276596e-05,
|
218 |
+
"loss": 0.9794,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.18,
|
223 |
+
"learning_rate": 2.390488110137672e-05,
|
224 |
+
"loss": 1.0715,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.18,
|
229 |
+
"learning_rate": 2.3873591989987484e-05,
|
230 |
+
"loss": 0.8954,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.19,
|
235 |
+
"learning_rate": 2.384230287859825e-05,
|
236 |
+
"loss": 0.9088,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.2,
|
241 |
+
"learning_rate": 2.381101376720901e-05,
|
242 |
+
"loss": 0.9877,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.2,
|
247 |
+
"learning_rate": 2.3779724655819777e-05,
|
248 |
+
"loss": 0.9352,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.2,
|
253 |
+
"learning_rate": 2.374843554443054e-05,
|
254 |
+
"loss": 1.0049,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.21,
|
259 |
+
"learning_rate": 2.3717146433041304e-05,
|
260 |
+
"loss": 1.095,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.21,
|
265 |
+
"learning_rate": 2.3685857321652066e-05,
|
266 |
+
"loss": 0.8134,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.22,
|
271 |
+
"learning_rate": 2.365456821026283e-05,
|
272 |
+
"loss": 0.8944,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.23,
|
277 |
+
"learning_rate": 2.3623279098873594e-05,
|
278 |
+
"loss": 0.9799,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.23,
|
283 |
+
"learning_rate": 2.3591989987484356e-05,
|
284 |
+
"loss": 0.8573,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.23,
|
289 |
+
"learning_rate": 2.356070087609512e-05,
|
290 |
+
"loss": 0.9628,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.24,
|
295 |
+
"learning_rate": 2.3529411764705884e-05,
|
296 |
+
"loss": 0.847,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.24,
|
301 |
+
"learning_rate": 2.349812265331665e-05,
|
302 |
+
"loss": 0.8553,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.25,
|
307 |
+
"learning_rate": 2.346683354192741e-05,
|
308 |
+
"loss": 0.9287,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.26,
|
313 |
+
"learning_rate": 2.3435544430538173e-05,
|
314 |
+
"loss": 0.8922,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.26,
|
319 |
+
"learning_rate": 2.340425531914894e-05,
|
320 |
+
"loss": 0.8925,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.27,
|
325 |
+
"learning_rate": 2.33729662077597e-05,
|
326 |
+
"loss": 0.9052,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.27,
|
331 |
+
"learning_rate": 2.3341677096370466e-05,
|
332 |
+
"loss": 0.9616,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.28,
|
337 |
+
"learning_rate": 2.331038798498123e-05,
|
338 |
+
"loss": 0.8965,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.28,
|
343 |
+
"learning_rate": 2.3279098873591994e-05,
|
344 |
+
"loss": 0.8449,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.28,
|
349 |
+
"learning_rate": 2.3247809762202756e-05,
|
350 |
+
"loss": 0.9513,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.29,
|
355 |
+
"learning_rate": 2.3216520650813518e-05,
|
356 |
+
"loss": 0.9176,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.29,
|
361 |
+
"learning_rate": 2.3185231539424284e-05,
|
362 |
+
"loss": 0.8795,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.3,
|
367 |
+
"learning_rate": 2.3153942428035046e-05,
|
368 |
+
"loss": 0.9245,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.3,
|
373 |
+
"learning_rate": 2.3122653316645808e-05,
|
374 |
+
"loss": 0.8279,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.31,
|
379 |
+
"learning_rate": 2.309136420525657e-05,
|
380 |
+
"loss": 0.89,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.32,
|
385 |
+
"learning_rate": 2.3060075093867335e-05,
|
386 |
+
"loss": 0.916,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.32,
|
391 |
+
"learning_rate": 2.3028785982478097e-05,
|
392 |
+
"loss": 0.9223,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.33,
|
397 |
+
"learning_rate": 2.299749687108886e-05,
|
398 |
+
"loss": 1.0349,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.33,
|
403 |
+
"learning_rate": 2.2966207759699625e-05,
|
404 |
+
"loss": 0.8693,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.34,
|
409 |
+
"learning_rate": 2.2934918648310387e-05,
|
410 |
+
"loss": 0.8737,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.34,
|
415 |
+
"learning_rate": 2.2903629536921153e-05,
|
416 |
+
"loss": 0.9092,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.34,
|
421 |
+
"learning_rate": 2.2872340425531915e-05,
|
422 |
+
"loss": 0.8561,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.35,
|
427 |
+
"learning_rate": 2.284105131414268e-05,
|
428 |
+
"loss": 1.0239,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.35,
|
433 |
+
"learning_rate": 2.2809762202753442e-05,
|
434 |
+
"loss": 0.7588,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.36,
|
439 |
+
"learning_rate": 2.2778473091364204e-05,
|
440 |
+
"loss": 0.9493,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.36,
|
445 |
+
"learning_rate": 2.274718397997497e-05,
|
446 |
+
"loss": 0.9049,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.37,
|
451 |
+
"learning_rate": 2.2715894868585732e-05,
|
452 |
+
"loss": 0.8972,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.38,
|
457 |
+
"learning_rate": 2.2684605757196497e-05,
|
458 |
+
"loss": 0.8886,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.38,
|
463 |
+
"learning_rate": 2.265331664580726e-05,
|
464 |
+
"loss": 0.7319,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.39,
|
469 |
+
"learning_rate": 2.2622027534418025e-05,
|
470 |
+
"loss": 0.842,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.39,
|
475 |
+
"learning_rate": 2.2590738423028787e-05,
|
476 |
+
"loss": 0.788,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.4,
|
481 |
+
"learning_rate": 2.255944931163955e-05,
|
482 |
+
"loss": 0.9804,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.4,
|
487 |
+
"learning_rate": 2.2528160200250315e-05,
|
488 |
+
"loss": 0.7391,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.41,
|
493 |
+
"learning_rate": 2.2496871088861077e-05,
|
494 |
+
"loss": 0.7924,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.41,
|
499 |
+
"learning_rate": 2.2465581977471842e-05,
|
500 |
+
"loss": 0.812,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.41,
|
505 |
+
"learning_rate": 2.2434292866082604e-05,
|
506 |
+
"loss": 0.8704,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.42,
|
511 |
+
"learning_rate": 2.240300375469337e-05,
|
512 |
+
"loss": 0.9598,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.42,
|
517 |
+
"learning_rate": 2.2371714643304132e-05,
|
518 |
+
"loss": 0.8249,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.43,
|
523 |
+
"learning_rate": 2.2340425531914894e-05,
|
524 |
+
"loss": 0.9608,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.43,
|
529 |
+
"learning_rate": 2.230913642052566e-05,
|
530 |
+
"loss": 0.9153,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.44,
|
535 |
+
"learning_rate": 2.227784730913642e-05,
|
536 |
+
"loss": 0.9486,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.45,
|
541 |
+
"learning_rate": 2.2246558197747187e-05,
|
542 |
+
"loss": 0.9806,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.45,
|
547 |
+
"learning_rate": 2.221526908635795e-05,
|
548 |
+
"loss": 0.8544,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.46,
|
553 |
+
"learning_rate": 2.2183979974968714e-05,
|
554 |
+
"loss": 0.8845,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.46,
|
559 |
+
"learning_rate": 2.2152690863579477e-05,
|
560 |
+
"loss": 0.926,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.47,
|
565 |
+
"learning_rate": 2.212140175219024e-05,
|
566 |
+
"loss": 0.8515,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.47,
|
571 |
+
"learning_rate": 2.2090112640801004e-05,
|
572 |
+
"loss": 0.7667,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.47,
|
577 |
+
"learning_rate": 2.2058823529411766e-05,
|
578 |
+
"loss": 0.813,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.48,
|
583 |
+
"learning_rate": 2.202753441802253e-05,
|
584 |
+
"loss": 0.785,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.48,
|
589 |
+
"learning_rate": 2.1996245306633294e-05,
|
590 |
+
"loss": 0.87,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.49,
|
595 |
+
"learning_rate": 2.1964956195244056e-05,
|
596 |
+
"loss": 0.8281,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.49,
|
601 |
+
"learning_rate": 2.193366708385482e-05,
|
602 |
+
"loss": 0.9875,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.5,
|
607 |
+
"learning_rate": 2.1902377972465583e-05,
|
608 |
+
"loss": 0.8709,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.51,
|
613 |
+
"learning_rate": 2.1871088861076345e-05,
|
614 |
+
"loss": 0.9377,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.51,
|
619 |
+
"learning_rate": 2.183979974968711e-05,
|
620 |
+
"loss": 0.7962,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.52,
|
625 |
+
"learning_rate": 2.1808510638297873e-05,
|
626 |
+
"loss": 0.7485,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.52,
|
631 |
+
"learning_rate": 2.1777221526908635e-05,
|
632 |
+
"loss": 0.7911,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.53,
|
637 |
+
"learning_rate": 2.17459324155194e-05,
|
638 |
+
"loss": 0.8777,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.53,
|
643 |
+
"learning_rate": 2.1714643304130163e-05,
|
644 |
+
"loss": 0.8287,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.54,
|
649 |
+
"learning_rate": 2.1683354192740925e-05,
|
650 |
+
"loss": 0.8716,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.54,
|
655 |
+
"learning_rate": 2.165206508135169e-05,
|
656 |
+
"loss": 0.8574,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.55,
|
661 |
+
"learning_rate": 2.1620775969962452e-05,
|
662 |
+
"loss": 0.9586,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.55,
|
667 |
+
"learning_rate": 2.1589486858573218e-05,
|
668 |
+
"loss": 0.867,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.56,
|
673 |
+
"learning_rate": 2.155819774718398e-05,
|
674 |
+
"loss": 0.852,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.56,
|
679 |
+
"learning_rate": 2.1526908635794745e-05,
|
680 |
+
"loss": 0.9795,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.56,
|
685 |
+
"learning_rate": 2.1495619524405507e-05,
|
686 |
+
"loss": 0.8867,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.57,
|
691 |
+
"learning_rate": 2.146433041301627e-05,
|
692 |
+
"loss": 0.819,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.57,
|
697 |
+
"learning_rate": 2.1433041301627035e-05,
|
698 |
+
"loss": 0.9421,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.58,
|
703 |
+
"learning_rate": 2.1401752190237797e-05,
|
704 |
+
"loss": 1.0068,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.58,
|
709 |
+
"learning_rate": 2.1370463078848563e-05,
|
710 |
+
"loss": 0.8312,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.59,
|
715 |
+
"learning_rate": 2.1339173967459325e-05,
|
716 |
+
"loss": 0.9313,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.59,
|
721 |
+
"learning_rate": 2.130788485607009e-05,
|
722 |
+
"loss": 0.858,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.6,
|
727 |
+
"learning_rate": 2.1276595744680852e-05,
|
728 |
+
"loss": 0.8108,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.6,
|
733 |
+
"learning_rate": 2.1245306633291614e-05,
|
734 |
+
"loss": 0.8538,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.61,
|
739 |
+
"learning_rate": 2.121401752190238e-05,
|
740 |
+
"loss": 0.8773,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.61,
|
745 |
+
"learning_rate": 2.1182728410513142e-05,
|
746 |
+
"loss": 0.9329,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.62,
|
751 |
+
"learning_rate": 2.1151439299123907e-05,
|
752 |
+
"loss": 1.0055,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.62,
|
757 |
+
"learning_rate": 2.112015018773467e-05,
|
758 |
+
"loss": 0.859,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.63,
|
763 |
+
"learning_rate": 2.1088861076345435e-05,
|
764 |
+
"loss": 0.6981,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.64,
|
769 |
+
"learning_rate": 2.1057571964956197e-05,
|
770 |
+
"loss": 0.7186,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.64,
|
775 |
+
"learning_rate": 2.102628285356696e-05,
|
776 |
+
"loss": 0.8779,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.65,
|
781 |
+
"learning_rate": 2.0994993742177725e-05,
|
782 |
+
"loss": 0.8209,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.65,
|
787 |
+
"learning_rate": 2.0963704630788487e-05,
|
788 |
+
"loss": 0.8902,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.66,
|
793 |
+
"learning_rate": 2.0932415519399252e-05,
|
794 |
+
"loss": 0.8439,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.66,
|
799 |
+
"learning_rate": 2.0901126408010014e-05,
|
800 |
+
"loss": 0.8764,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.67,
|
805 |
+
"learning_rate": 2.086983729662078e-05,
|
806 |
+
"loss": 0.8853,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.67,
|
811 |
+
"learning_rate": 2.0838548185231542e-05,
|
812 |
+
"loss": 0.9366,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.68,
|
817 |
+
"learning_rate": 2.0807259073842304e-05,
|
818 |
+
"loss": 0.8731,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.68,
|
823 |
+
"learning_rate": 2.077596996245307e-05,
|
824 |
+
"loss": 0.9189,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.69,
|
829 |
+
"learning_rate": 2.074468085106383e-05,
|
830 |
+
"loss": 0.9024,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.69,
|
835 |
+
"learning_rate": 2.0713391739674597e-05,
|
836 |
+
"loss": 0.7801,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.69,
|
841 |
+
"learning_rate": 2.068210262828536e-05,
|
842 |
+
"loss": 0.7881,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.7,
|
847 |
+
"learning_rate": 2.065081351689612e-05,
|
848 |
+
"loss": 0.9681,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.7,
|
853 |
+
"learning_rate": 2.0619524405506883e-05,
|
854 |
+
"loss": 0.8103,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.71,
|
859 |
+
"learning_rate": 2.058823529411765e-05,
|
860 |
+
"loss": 0.755,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.71,
|
865 |
+
"learning_rate": 2.055694618272841e-05,
|
866 |
+
"loss": 0.9589,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.72,
|
871 |
+
"learning_rate": 2.0525657071339173e-05,
|
872 |
+
"loss": 1.0164,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.72,
|
877 |
+
"learning_rate": 2.0494367959949938e-05,
|
878 |
+
"loss": 0.8323,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.73,
|
883 |
+
"learning_rate": 2.04630788485607e-05,
|
884 |
+
"loss": 0.7985,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.73,
|
889 |
+
"learning_rate": 2.0431789737171462e-05,
|
890 |
+
"loss": 1.0317,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.74,
|
895 |
+
"learning_rate": 2.0400500625782228e-05,
|
896 |
+
"loss": 0.7405,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.74,
|
901 |
+
"learning_rate": 2.036921151439299e-05,
|
902 |
+
"loss": 0.8311,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.75,
|
907 |
+
"learning_rate": 2.0337922403003756e-05,
|
908 |
+
"loss": 0.79,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.76,
|
913 |
+
"learning_rate": 2.0306633291614518e-05,
|
914 |
+
"loss": 0.8272,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.76,
|
919 |
+
"learning_rate": 2.0275344180225283e-05,
|
920 |
+
"loss": 0.777,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.77,
|
925 |
+
"learning_rate": 2.0244055068836045e-05,
|
926 |
+
"loss": 0.7773,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.77,
|
931 |
+
"learning_rate": 2.0212765957446807e-05,
|
932 |
+
"loss": 0.7078,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.78,
|
937 |
+
"learning_rate": 2.0181476846057573e-05,
|
938 |
+
"loss": 0.9022,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.78,
|
943 |
+
"learning_rate": 2.0150187734668335e-05,
|
944 |
+
"loss": 0.8121,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.79,
|
949 |
+
"learning_rate": 2.01188986232791e-05,
|
950 |
+
"loss": 0.8438,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.79,
|
955 |
+
"learning_rate": 2.0087609511889862e-05,
|
956 |
+
"loss": 0.8567,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.8,
|
961 |
+
"learning_rate": 2.0056320400500628e-05,
|
962 |
+
"loss": 0.7968,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.8,
|
967 |
+
"learning_rate": 2.002503128911139e-05,
|
968 |
+
"loss": 0.8846,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.81,
|
973 |
+
"learning_rate": 1.9993742177722152e-05,
|
974 |
+
"loss": 0.7853,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.81,
|
979 |
+
"learning_rate": 1.9962453066332917e-05,
|
980 |
+
"loss": 0.8335,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.81,
|
985 |
+
"learning_rate": 1.993116395494368e-05,
|
986 |
+
"loss": 0.9056,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.82,
|
991 |
+
"learning_rate": 1.9899874843554445e-05,
|
992 |
+
"loss": 0.826,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.82,
|
997 |
+
"learning_rate": 1.9868585732165207e-05,
|
998 |
+
"loss": 0.7589,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.83,
|
1003 |
+
"learning_rate": 1.9837296620775973e-05,
|
1004 |
+
"loss": 0.8544,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.83,
|
1009 |
+
"learning_rate": 1.9806007509386735e-05,
|
1010 |
+
"loss": 0.7743,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.84,
|
1015 |
+
"learning_rate": 1.9774718397997497e-05,
|
1016 |
+
"loss": 0.7362,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.84,
|
1021 |
+
"learning_rate": 1.9743429286608262e-05,
|
1022 |
+
"loss": 0.7873,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.85,
|
1027 |
+
"learning_rate": 1.9712140175219024e-05,
|
1028 |
+
"loss": 0.861,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.85,
|
1033 |
+
"learning_rate": 1.968085106382979e-05,
|
1034 |
+
"loss": 1.001,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.86,
|
1039 |
+
"learning_rate": 1.9649561952440552e-05,
|
1040 |
+
"loss": 0.9549,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.86,
|
1045 |
+
"learning_rate": 1.9618272841051317e-05,
|
1046 |
+
"loss": 0.7536,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.87,
|
1051 |
+
"learning_rate": 1.958698372966208e-05,
|
1052 |
+
"loss": 0.7567,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.88,
|
1057 |
+
"learning_rate": 1.955569461827284e-05,
|
1058 |
+
"loss": 0.8637,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.88,
|
1063 |
+
"learning_rate": 1.9524405506883607e-05,
|
1064 |
+
"loss": 0.8629,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.89,
|
1069 |
+
"learning_rate": 1.949311639549437e-05,
|
1070 |
+
"loss": 0.8645,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.89,
|
1075 |
+
"learning_rate": 1.9461827284105135e-05,
|
1076 |
+
"loss": 0.7941,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.9,
|
1081 |
+
"learning_rate": 1.9430538172715897e-05,
|
1082 |
+
"loss": 0.9089,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.9,
|
1087 |
+
"learning_rate": 1.939924906132666e-05,
|
1088 |
+
"loss": 0.8458,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.91,
|
1093 |
+
"learning_rate": 1.9367959949937424e-05,
|
1094 |
+
"loss": 0.7946,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.91,
|
1099 |
+
"learning_rate": 1.9336670838548186e-05,
|
1100 |
+
"loss": 0.7927,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.92,
|
1105 |
+
"learning_rate": 1.930538172715895e-05,
|
1106 |
+
"loss": 0.9227,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.92,
|
1111 |
+
"learning_rate": 1.927409261576971e-05,
|
1112 |
+
"loss": 0.7854,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.93,
|
1117 |
+
"learning_rate": 1.9242803504380476e-05,
|
1118 |
+
"loss": 0.7407,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.93,
|
1123 |
+
"learning_rate": 1.9211514392991238e-05,
|
1124 |
+
"loss": 0.8731,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.94,
|
1129 |
+
"learning_rate": 1.9180225281602004e-05,
|
1130 |
+
"loss": 0.817,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.94,
|
1135 |
+
"learning_rate": 1.9148936170212766e-05,
|
1136 |
+
"loss": 0.7726,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.94,
|
1141 |
+
"learning_rate": 1.9117647058823528e-05,
|
1142 |
+
"loss": 0.8113,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.95,
|
1147 |
+
"learning_rate": 1.9086357947434293e-05,
|
1148 |
+
"loss": 0.7673,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.95,
|
1153 |
+
"learning_rate": 1.9055068836045055e-05,
|
1154 |
+
"loss": 0.9078,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.96,
|
1159 |
+
"learning_rate": 1.902377972465582e-05,
|
1160 |
+
"loss": 0.7135,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.96,
|
1165 |
+
"learning_rate": 1.8992490613266583e-05,
|
1166 |
+
"loss": 0.8699,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.97,
|
1171 |
+
"learning_rate": 1.896120150187735e-05,
|
1172 |
+
"loss": 0.7306,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.97,
|
1177 |
+
"learning_rate": 1.892991239048811e-05,
|
1178 |
+
"loss": 0.9502,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.98,
|
1183 |
+
"learning_rate": 1.8898623279098873e-05,
|
1184 |
+
"loss": 0.8298,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.98,
|
1189 |
+
"learning_rate": 1.8867334167709638e-05,
|
1190 |
+
"loss": 0.8624,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.99,
|
1195 |
+
"learning_rate": 1.88360450563204e-05,
|
1196 |
+
"loss": 0.9778,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.99,
|
1201 |
+
"learning_rate": 1.8804755944931166e-05,
|
1202 |
+
"loss": 0.7804,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.0,
|
1207 |
+
"learning_rate": 1.8773466833541928e-05,
|
1208 |
+
"loss": 0.8165,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.0,
|
1213 |
+
"learning_rate": 1.8742177722152693e-05,
|
1214 |
+
"loss": 0.8972,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.01,
|
1219 |
+
"learning_rate": 1.8710888610763455e-05,
|
1220 |
+
"loss": 0.8584,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.01,
|
1225 |
+
"learning_rate": 1.8679599499374217e-05,
|
1226 |
+
"loss": 0.8229,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.02,
|
1231 |
+
"learning_rate": 1.8648310387984983e-05,
|
1232 |
+
"loss": 0.8804,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.02,
|
1237 |
+
"learning_rate": 1.8617021276595745e-05,
|
1238 |
+
"loss": 0.7828,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 1.03,
|
1243 |
+
"learning_rate": 1.858573216520651e-05,
|
1244 |
+
"loss": 0.6817,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.03,
|
1249 |
+
"learning_rate": 1.8554443053817272e-05,
|
1250 |
+
"loss": 0.7627,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 1.04,
|
1255 |
+
"learning_rate": 1.8523153942428038e-05,
|
1256 |
+
"loss": 0.707,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 1.04,
|
1261 |
+
"learning_rate": 1.84918648310388e-05,
|
1262 |
+
"loss": 0.8976,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.05,
|
1267 |
+
"learning_rate": 1.8460575719649562e-05,
|
1268 |
+
"loss": 0.8772,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.05,
|
1273 |
+
"learning_rate": 1.8429286608260328e-05,
|
1274 |
+
"loss": 0.9126,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 1.06,
|
1279 |
+
"learning_rate": 1.839799749687109e-05,
|
1280 |
+
"loss": 0.7939,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.06,
|
1285 |
+
"learning_rate": 1.8366708385481855e-05,
|
1286 |
+
"loss": 0.7075,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 1.07,
|
1291 |
+
"learning_rate": 1.8335419274092617e-05,
|
1292 |
+
"loss": 0.7325,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 1.07,
|
1297 |
+
"learning_rate": 1.8304130162703383e-05,
|
1298 |
+
"loss": 0.7835,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 1.08,
|
1303 |
+
"learning_rate": 1.8272841051314145e-05,
|
1304 |
+
"loss": 0.8144,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.08,
|
1309 |
+
"learning_rate": 1.8241551939924907e-05,
|
1310 |
+
"loss": 0.7313,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.09,
|
1315 |
+
"learning_rate": 1.8210262828535672e-05,
|
1316 |
+
"loss": 0.885,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 1.09,
|
1321 |
+
"learning_rate": 1.8178973717146434e-05,
|
1322 |
+
"loss": 0.8518,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 1.1,
|
1327 |
+
"learning_rate": 1.8147684605757196e-05,
|
1328 |
+
"loss": 0.7664,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 1.1,
|
1333 |
+
"learning_rate": 1.8116395494367962e-05,
|
1334 |
+
"loss": 0.8554,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.11,
|
1339 |
+
"learning_rate": 1.8085106382978724e-05,
|
1340 |
+
"loss": 0.7364,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 1.11,
|
1345 |
+
"learning_rate": 1.8053817271589486e-05,
|
1346 |
+
"loss": 0.7854,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.12,
|
1351 |
+
"learning_rate": 1.8022528160200248e-05,
|
1352 |
+
"loss": 0.7999,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.12,
|
1357 |
+
"learning_rate": 1.7991239048811014e-05,
|
1358 |
+
"loss": 0.8567,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 1.13,
|
1363 |
+
"learning_rate": 1.7959949937421776e-05,
|
1364 |
+
"loss": 0.8642,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 1.14,
|
1369 |
+
"learning_rate": 1.792866082603254e-05,
|
1370 |
+
"loss": 0.7586,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 1.14,
|
1375 |
+
"learning_rate": 1.7897371714643303e-05,
|
1376 |
+
"loss": 0.7328,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.15,
|
1381 |
+
"learning_rate": 1.786608260325407e-05,
|
1382 |
+
"loss": 0.8685,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 1.15,
|
1387 |
+
"learning_rate": 1.783479349186483e-05,
|
1388 |
+
"loss": 0.6846,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.16,
|
1393 |
+
"learning_rate": 1.7803504380475593e-05,
|
1394 |
+
"loss": 0.7963,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.16,
|
1399 |
+
"learning_rate": 1.777221526908636e-05,
|
1400 |
+
"loss": 0.762,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.17,
|
1405 |
+
"learning_rate": 1.774092615769712e-05,
|
1406 |
+
"loss": 0.8083,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 1.17,
|
1411 |
+
"learning_rate": 1.7709637046307886e-05,
|
1412 |
+
"loss": 0.8685,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 1.18,
|
1417 |
+
"learning_rate": 1.7678347934918648e-05,
|
1418 |
+
"loss": 0.6171,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.18,
|
1423 |
+
"learning_rate": 1.7647058823529414e-05,
|
1424 |
+
"loss": 0.7341,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 1.19,
|
1429 |
+
"learning_rate": 1.7615769712140176e-05,
|
1430 |
+
"loss": 0.7801,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.19,
|
1435 |
+
"learning_rate": 1.7584480600750938e-05,
|
1436 |
+
"loss": 0.8321,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.2,
|
1441 |
+
"learning_rate": 1.7553191489361703e-05,
|
1442 |
+
"loss": 0.7637,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 1.2,
|
1447 |
+
"learning_rate": 1.7521902377972465e-05,
|
1448 |
+
"loss": 0.7872,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.21,
|
1453 |
+
"learning_rate": 1.749061326658323e-05,
|
1454 |
+
"loss": 0.8981,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 1.21,
|
1459 |
+
"learning_rate": 1.7459324155193993e-05,
|
1460 |
+
"loss": 0.8244,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 1.22,
|
1465 |
+
"learning_rate": 1.742803504380476e-05,
|
1466 |
+
"loss": 0.7284,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 1.22,
|
1471 |
+
"learning_rate": 1.739674593241552e-05,
|
1472 |
+
"loss": 0.8948,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.23,
|
1477 |
+
"learning_rate": 1.7365456821026283e-05,
|
1478 |
+
"loss": 0.7505,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.23,
|
1483 |
+
"learning_rate": 1.7334167709637048e-05,
|
1484 |
+
"loss": 0.6836,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.23,
|
1489 |
+
"learning_rate": 1.730287859824781e-05,
|
1490 |
+
"loss": 0.825,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 1.24,
|
1495 |
+
"learning_rate": 1.7271589486858576e-05,
|
1496 |
+
"loss": 0.954,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 1.25,
|
1501 |
+
"learning_rate": 1.7240300375469338e-05,
|
1502 |
+
"loss": 0.7165,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 1.25,
|
1507 |
+
"learning_rate": 1.7209011264080103e-05,
|
1508 |
+
"loss": 0.8173,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 1.25,
|
1513 |
+
"learning_rate": 1.7177722152690865e-05,
|
1514 |
+
"loss": 0.8108,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.26,
|
1519 |
+
"learning_rate": 1.7146433041301627e-05,
|
1520 |
+
"loss": 0.8313,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.27,
|
1525 |
+
"learning_rate": 1.7115143929912393e-05,
|
1526 |
+
"loss": 0.9048,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 1.27,
|
1531 |
+
"learning_rate": 1.7083854818523155e-05,
|
1532 |
+
"loss": 0.8831,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 1.27,
|
1537 |
+
"learning_rate": 1.705256570713392e-05,
|
1538 |
+
"loss": 0.717,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 1.28,
|
1543 |
+
"learning_rate": 1.7021276595744682e-05,
|
1544 |
+
"loss": 0.838,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 1.28,
|
1549 |
+
"learning_rate": 1.6989987484355448e-05,
|
1550 |
+
"loss": 0.8352,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 1.29,
|
1555 |
+
"learning_rate": 1.695869837296621e-05,
|
1556 |
+
"loss": 0.6925,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.29,
|
1561 |
+
"learning_rate": 1.6927409261576972e-05,
|
1562 |
+
"loss": 0.6983,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.3,
|
1567 |
+
"learning_rate": 1.6896120150187734e-05,
|
1568 |
+
"loss": 0.7399,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.3,
|
1573 |
+
"learning_rate": 1.68648310387985e-05,
|
1574 |
+
"loss": 0.9373,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 1.31,
|
1579 |
+
"learning_rate": 1.6833541927409262e-05,
|
1580 |
+
"loss": 0.807,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.31,
|
1585 |
+
"learning_rate": 1.6802252816020024e-05,
|
1586 |
+
"loss": 1.0353,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 1.32,
|
1591 |
+
"learning_rate": 1.677096370463079e-05,
|
1592 |
+
"loss": 0.9005,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.32,
|
1597 |
+
"learning_rate": 1.673967459324155e-05,
|
1598 |
+
"loss": 0.7737,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.33,
|
1603 |
+
"learning_rate": 1.6708385481852313e-05,
|
1604 |
+
"loss": 0.8731,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.33,
|
1609 |
+
"learning_rate": 1.667709637046308e-05,
|
1610 |
+
"loss": 0.9601,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.34,
|
1615 |
+
"learning_rate": 1.664580725907384e-05,
|
1616 |
+
"loss": 0.7676,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 1.34,
|
1621 |
+
"learning_rate": 1.6614518147684607e-05,
|
1622 |
+
"loss": 0.7407,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 1.35,
|
1627 |
+
"learning_rate": 1.658322903629537e-05,
|
1628 |
+
"loss": 0.7421,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 1.35,
|
1633 |
+
"learning_rate": 1.6551939924906134e-05,
|
1634 |
+
"loss": 0.7523,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 1.36,
|
1639 |
+
"learning_rate": 1.6520650813516896e-05,
|
1640 |
+
"loss": 0.7475,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.36,
|
1645 |
+
"learning_rate": 1.6489361702127658e-05,
|
1646 |
+
"loss": 0.7144,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.37,
|
1651 |
+
"learning_rate": 1.6458072590738424e-05,
|
1652 |
+
"loss": 0.9052,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.38,
|
1657 |
+
"learning_rate": 1.6426783479349186e-05,
|
1658 |
+
"loss": 0.7974,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.38,
|
1663 |
+
"learning_rate": 1.639549436795995e-05,
|
1664 |
+
"loss": 0.8961,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 1.39,
|
1669 |
+
"learning_rate": 1.6364205256570713e-05,
|
1670 |
+
"loss": 0.7951,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 1.39,
|
1675 |
+
"learning_rate": 1.633291614518148e-05,
|
1676 |
+
"loss": 0.7915,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.4,
|
1681 |
+
"learning_rate": 1.630162703379224e-05,
|
1682 |
+
"loss": 0.7114,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.4,
|
1687 |
+
"learning_rate": 1.6270337922403003e-05,
|
1688 |
+
"loss": 0.766,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.41,
|
1693 |
+
"learning_rate": 1.623904881101377e-05,
|
1694 |
+
"loss": 0.7336,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 1.41,
|
1699 |
+
"learning_rate": 1.620775969962453e-05,
|
1700 |
+
"loss": 0.8702,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 1.42,
|
1705 |
+
"learning_rate": 1.6176470588235296e-05,
|
1706 |
+
"loss": 0.8667,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 1.42,
|
1711 |
+
"learning_rate": 1.6145181476846058e-05,
|
1712 |
+
"loss": 0.7561,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 1.43,
|
1717 |
+
"learning_rate": 1.6113892365456824e-05,
|
1718 |
+
"loss": 0.6965,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.43,
|
1723 |
+
"learning_rate": 1.6082603254067586e-05,
|
1724 |
+
"loss": 0.7825,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 1.44,
|
1729 |
+
"learning_rate": 1.6051314142678348e-05,
|
1730 |
+
"loss": 0.7628,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.44,
|
1735 |
+
"learning_rate": 1.6020025031289113e-05,
|
1736 |
+
"loss": 0.7527,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.45,
|
1741 |
+
"learning_rate": 1.5988735919899875e-05,
|
1742 |
+
"loss": 0.7336,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 1.45,
|
1747 |
+
"learning_rate": 1.595744680851064e-05,
|
1748 |
+
"loss": 0.9209,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 1.46,
|
1753 |
+
"learning_rate": 1.5926157697121403e-05,
|
1754 |
+
"loss": 0.8466,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 1.46,
|
1759 |
+
"learning_rate": 1.589486858573217e-05,
|
1760 |
+
"loss": 0.8237,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.47,
|
1765 |
+
"learning_rate": 1.586357947434293e-05,
|
1766 |
+
"loss": 0.7912,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.47,
|
1771 |
+
"learning_rate": 1.5832290362953693e-05,
|
1772 |
+
"loss": 0.74,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.48,
|
1777 |
+
"learning_rate": 1.5801001251564458e-05,
|
1778 |
+
"loss": 0.7227,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.48,
|
1783 |
+
"learning_rate": 1.576971214017522e-05,
|
1784 |
+
"loss": 0.8125,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.48,
|
1789 |
+
"learning_rate": 1.5738423028785986e-05,
|
1790 |
+
"loss": 0.7384,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.49,
|
1795 |
+
"learning_rate": 1.5707133917396748e-05,
|
1796 |
+
"loss": 0.852,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 1.5,
|
1801 |
+
"learning_rate": 1.567584480600751e-05,
|
1802 |
+
"loss": 0.8198,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 1.5,
|
1807 |
+
"learning_rate": 1.5644555694618275e-05,
|
1808 |
+
"loss": 0.8817,
|
1809 |
+
"step": 300
|
1810 |
+
}
|
1811 |
+
],
|
1812 |
+
"logging_steps": 1,
|
1813 |
+
"max_steps": 800,
|
1814 |
+
"num_input_tokens_seen": 0,
|
1815 |
+
"num_train_epochs": 4,
|
1816 |
+
"save_steps": 10,
|
1817 |
+
"total_flos": 3.140916098758944e+16,
|
1818 |
+
"train_batch_size": 1,
|
1819 |
+
"trial_name": null,
|
1820 |
+
"trial_params": null
|
1821 |
+
}
|
checkpoint-300/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3501b609227a6d61fef0435402a30ee750e1e3f7c04acadf47d4128368c928f
|
3 |
+
size 4728
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Viet-Mistral/Vistral-7B-Chat",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.38.0.dev0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 38369
|
26 |
+
}
|
finetune.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, TextStreamer
|
3 |
+
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
|
4 |
+
import os, torch, wandb, platform, warnings
|
5 |
+
from datasets import load_dataset
|
6 |
+
from trl import SFTTrainer
|
7 |
+
|
8 |
+
hf_token = ''
|
9 |
+
wnb_token = ''
|
10 |
+
wnb_name = 'vistral-chatml'
|
11 |
+
MODEL = 'Viet-Mistral/Vistral-7B-Chat'
|
12 |
+
resume_from_checkpoint = False
|
13 |
+
output_dir = 'vistral-chatml'
|
14 |
+
tokenizer_path = '.'
|
15 |
+
|
16 |
+
#######################################################
|
17 |
+
## DATASET
|
18 |
+
|
19 |
+
|
20 |
+
from datasets import load_dataset
|
21 |
+
|
22 |
+
|
23 |
+
def generate_system_prompt(i):
|
24 |
+
system_prompt = "Bạn là một trợ lí Tiếng Việt nhiệt tình và trung thực. Hãy luôn trả lời một cách hữu ích nhất có thể, đồng thời giữ an toàn."
|
25 |
+
if i % 2 == 0:
|
26 |
+
system_prompt += "\nCâu trả lời của bạn không nên chứa bất kỳ nội dung gây hại, phân biệt chủng tộc, phân biệt giới tính, độc hại, nguy hiểm hoặc bất hợp pháp nào. Hãy đảm bảo rằng các câu trả lời của bạn không có thiên kiến xã hội và mang tính tích cực."
|
27 |
+
if i % 5 == 0:
|
28 |
+
system_prompt += "\nNếu một câu hỏi không có ý nghĩa hoặc không hợp lý về mặt thông tin, hãy giải thích tại sao thay vì trả lời một điều gì đó không chính xác. Nếu bạn không biết câu trả lời cho một câu hỏi, hãy trẳ lời là bạn không biết và vui lòng không chia sẻ thông tin sai lệch."
|
29 |
+
return system_prompt
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
32 |
+
|
33 |
+
def tokenize_chat(input, i):
|
34 |
+
print(generate_system_prompt(i))
|
35 |
+
conversation = [{'role': 'system', 'content': generate_system_prompt(i)}]
|
36 |
+
for msg in input['conversations']:
|
37 |
+
output = {'role': 'user', 'content': msg['value']}
|
38 |
+
if msg['from'] == 'gpt':
|
39 |
+
output['role'] = 'assistant'
|
40 |
+
conversation.append(output)
|
41 |
+
formatted = tokenizer.apply_chat_template(conversation, tokenize=False)
|
42 |
+
return tokenizer(formatted)
|
43 |
+
|
44 |
+
sharegpt_dataset = load_dataset('bkai-foundation-models/vi-self-chat-sharegpt-format')
|
45 |
+
train_data = sharegpt_dataset['train'].shuffle(seed=42)\
|
46 |
+
.select(range(800))\
|
47 |
+
.map(lambda x, i: tokenize_chat(x, i), remove_columns=["conversations"], with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
#######################################################
|
51 |
+
## SETUP
|
52 |
+
|
53 |
+
wandb.login(key=wnb_token)
|
54 |
+
wandb.init(name=wnb_name)
|
55 |
+
# use custom tokenizer instead of one comes from the model
|
56 |
+
#tokenizer = AutoTokenizer.from_pretrained(
|
57 |
+
# MODEL,
|
58 |
+
# add_eos_token=False,
|
59 |
+
# add_bos_token=False,
|
60 |
+
# token=hf_token,
|
61 |
+
#)
|
62 |
+
bnb_config = BitsAndBytesConfig(
|
63 |
+
load_in_4bit=True,
|
64 |
+
bnb_4bit_quant_type="nf4",
|
65 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
66 |
+
bnb_4bit_use_double_quant=True,
|
67 |
+
)
|
68 |
+
model = AutoModelForCausalLM.from_pretrained(
|
69 |
+
MODEL,
|
70 |
+
device_map="auto",
|
71 |
+
token=hf_token,
|
72 |
+
quantization_config=bnb_config,
|
73 |
+
trust_remote_code=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
#######################################################
|
78 |
+
## LORA CONFIG
|
79 |
+
|
80 |
+
model.gradient_checkpointing_enable()
|
81 |
+
model = prepare_model_for_kbit_training(model)
|
82 |
+
peft_config = LoraConfig(
|
83 |
+
r=8,
|
84 |
+
lora_alpha=16,
|
85 |
+
target_modules=[
|
86 |
+
"q_proj",
|
87 |
+
"k_proj",
|
88 |
+
"v_proj",
|
89 |
+
"o_proj",
|
90 |
+
"gate_proj",
|
91 |
+
"up_proj",
|
92 |
+
"down_proj",
|
93 |
+
"lm_head",
|
94 |
+
],
|
95 |
+
bias="none",
|
96 |
+
lora_dropout=0.05, # Conventional
|
97 |
+
task_type="CAUSAL_LM",
|
98 |
+
)
|
99 |
+
model = get_peft_model(model, peft_config)
|
100 |
+
model.print_trainable_parameters()
|
101 |
+
|
102 |
+
from accelerate import Accelerator
|
103 |
+
accelerator = Accelerator()
|
104 |
+
model = accelerator.prepare_model(model)
|
105 |
+
|
106 |
+
|
107 |
+
#######################################################
|
108 |
+
## TRAIN
|
109 |
+
|
110 |
+
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
111 |
+
trainer = Trainer(
|
112 |
+
model=model,
|
113 |
+
train_dataset=train_data,
|
114 |
+
args=TrainingArguments(
|
115 |
+
report_to='wandb',
|
116 |
+
warmup_steps=1,
|
117 |
+
per_device_train_batch_size=1,
|
118 |
+
gradient_accumulation_steps=4,
|
119 |
+
gradient_checkpointing=True,
|
120 |
+
num_train_epochs=4,
|
121 |
+
learning_rate=2.5e-5,
|
122 |
+
logging_steps=1,
|
123 |
+
optim="paged_adamw_8bit",
|
124 |
+
save_strategy="steps",
|
125 |
+
save_steps=10,
|
126 |
+
save_total_limit=4,
|
127 |
+
output_dir=output_dir
|
128 |
+
),
|
129 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
130 |
+
)
|
131 |
+
model.config.use_cache = False
|
132 |
+
|
133 |
+
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.38.0.dev0",
|
6 |
+
"use_cache": false
|
7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59dc9acb93ec34ca7dd6d92eaa56f0c4cf9e154141956f66d84888e971beb050
|
3 |
+
size 4995337088
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9befdd43080c0a6b4e6bd89a6dd4becf9ca9c48397aa36329d9fec60e5698922
|
3 |
+
size 4999819232
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:229ab0e866969c8e4f06dc42f6b5b6f7fcbb7d63f15eeb61760823dc89e1ce72
|
3 |
+
size 4592691112
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14587813888
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
run.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, TextStreamer
|
3 |
+
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
|
4 |
+
import os, torch, wandb, platform, warnings
|
5 |
+
from datasets import load_dataset
|
6 |
+
from trl import SFTTrainer
|
7 |
+
|
8 |
+
hf_token = '..........'
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained('./vistral-tokenizer')
|
11 |
+
bnb_config = BitsAndBytesConfig(
|
12 |
+
load_in_4bit=True,
|
13 |
+
bnb_4bit_quant_type="nf4",
|
14 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
15 |
+
bnb_4bit_use_double_quant=True,
|
16 |
+
)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
'Viet-Mistral/Vistral-7B-Chat',
|
19 |
+
device_map="auto",
|
20 |
+
token=hf_token,
|
21 |
+
quantization_config=bnb_config,
|
22 |
+
)
|
23 |
+
ft_model = PeftModel.from_pretrained(model, CHECKPOINT_PATH)
|
24 |
+
|
25 |
+
#torch.backends.cuda.enable_mem_efficient_sdp(False)
|
26 |
+
#torch.backends.cuda.enable_flash_sdp(False)
|
27 |
+
|
28 |
+
system_prompt = "Bạn là một trợ lí Tiếng Việt nhiệt tình và trung thực. Hãy luôn trả lời một cách hữu ích nhất có thể, đồng thời giữ an toàn."
|
29 |
+
|
30 |
+
stop_tokens = [tokenizer.eos_token_id, tokenizer('<|im_end|>')['input_ids'].pop()]
|
31 |
+
|
32 |
+
def chat_test():
|
33 |
+
conversation = [{"role": "system", "content": system_prompt }]
|
34 |
+
while True:
|
35 |
+
human = input("Human: ")
|
36 |
+
if human.lower() == "reset":
|
37 |
+
conversation = [{"role": "system", "content": system_prompt }]
|
38 |
+
print("The chat history has been cleared!")
|
39 |
+
continue
|
40 |
+
|
41 |
+
if human.lower() == "exit":
|
42 |
+
break
|
43 |
+
|
44 |
+
conversation.append({"role": "user", "content": human })
|
45 |
+
formatted = tokenizer.apply_chat_template(conversation, tokenize=False) + "<|im_start|>assistant"
|
46 |
+
tok = tokenizer(formatted, return_tensors="pt").to(ft_model.device)
|
47 |
+
input_ids = tok['input_ids']
|
48 |
+
|
49 |
+
out_ids = ft_model.generate(
|
50 |
+
input_ids=input_ids,
|
51 |
+
attention_mask=tok['attention_mask'],
|
52 |
+
eos_token_id=stop_tokens,
|
53 |
+
max_new_tokens=50,
|
54 |
+
do_sample=True,
|
55 |
+
top_p=0.95,
|
56 |
+
top_k=40,
|
57 |
+
temperature=0.1,
|
58 |
+
repetition_penalty=1.05,
|
59 |
+
)
|
60 |
+
assistant = tokenizer.batch_decode(out_ids[:, input_ids.size(1): ], skip_special_tokens=True)[0].strip()
|
61 |
+
print("Assistant: ", assistant)
|
62 |
+
conversation.append({"role": "assistant", "content": assistant })
|
63 |
+
|
64 |
+
chat_test()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "<|im_end|>",
|
4 |
+
"pad_token": "</s>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e792a804bbfc19a96b61b87109b8f2b0b7c92830025f285b402ba27c0c309c6f
|
3 |
+
size 596883
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"38365": {
|
28 |
+
"content": "<<SYS>>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"38366": {
|
36 |
+
"content": "<</SYS>>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"38367": {
|
44 |
+
"content": "<|im_start|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"38368": {
|
52 |
+
"content": "<|im_end|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"additional_special_tokens": [
|
61 |
+
"<unk>",
|
62 |
+
"<s>",
|
63 |
+
"</s>",
|
64 |
+
"<|im_start|>",
|
65 |
+
"<|im_end|>"
|
66 |
+
],
|
67 |
+
"bos_token": "<s>",
|
68 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
69 |
+
"clean_up_tokenization_spaces": false,
|
70 |
+
"eos_token": "<|im_end|>",
|
71 |
+
"legacy": true,
|
72 |
+
"model_max_length": 1000000000000000019884624838656,
|
73 |
+
"pad_token": "<unk>",
|
74 |
+
"sp_model_kwargs": {},
|
75 |
+
"spaces_between_special_tokens": false,
|
76 |
+
"tokenizer_class": "LlamaTokenizer",
|
77 |
+
"unk_token": "<unk>",
|
78 |
+
"use_default_system_prompt": false,
|
79 |
+
"use_fast": true
|
80 |
+
}
|
vistral-7b-chatml-Q4_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5b27fb9fc3b2118d24f5476e5881b4000045a640500c464319849d557746e14
|
3 |
+
size 4404661312
|