File size: 5,899 Bytes
bcb703b
 
fc8ef3d
6dba82e
fc8ef3d
ca10a26
fc8ef3d
33a5d22
fc8ef3d
 
 
 
 
 
 
 
 
33a5d22
 
 
 
 
ca10a26
fc8ef3d
 
a875d8c
8560e88
 
 
2b857fb
6dba82e
33a5d22
7ff54ea
33a5d22
 
 
 
bcb703b
33a5d22
fc8ef3d
ec09403
fc8ef3d
33a5d22
fc8ef3d
 
 
9bb929e
f746a0e
fc8ef3d
 
33a5d22
fc8ef3d
 
33a5d22
 
fc8ef3d
baa2e11
fc8ef3d
 
 
33a5d22
fc8ef3d
33a5d22
fc8ef3d
 
 
 
 
 
 
33a5d22
 
fc8ef3d
 
 
 
 
 
95b39b2
 
 
fc8ef3d
8f229a9
fc8ef3d
 
 
 
 
 
 
 
 
 
33a5d22
fc8ef3d
33a5d22
 
fc8ef3d
 
 
 
ec09403
fc8ef3d
ec09403
 
 
fc8ef3d
922df51
 
3e8a722
922df51
3e8a722
 
 
922df51
baa2e11
922df51
fc8ef3d
 
 
 
 
fd9e154
81b5afa
fc8ef3d
 
fd9e154
 
fc8ef3d
 
fd9e154
 
 
 
 
 
fc8ef3d
 
 
 
ec09403
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- pt
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: "<|startofinstruction|>Você pode me explicar o que é Aprendizagem de Máquina?<|endofinstruction|>"
  example_title: Aprendizagem de Máquina
- text: "<|startofinstruction|>Você sabe alguma coisa sobre Ética das Virtudes?<|endofinstruction|>"
  example_title: Ética
- text: "<|startofinstruction|>Como eu posso fazer a minha namorada feliz?<|endofinstruction|>"
  example_title: Conselho
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.1
    top_k: 50
    top_p: 1.0
    max_new_tokens: 200
    early_stopping: true
co2_eq_emissions:
  emissions: 350
  source: CodeCarbon
  training_type: fine-tuning
  geographical_location: Singapore
  hardware_used: NVIDIA A100-SXM4-40GB
---
# Aira-2-portuguese-124M

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-portuguese-124M is an instruction-tuned model based on [GPT-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese). The model was trained with a dataset composed of prompt, completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo-Portuguese).

## Details

- **Size:** 124,441,344 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
- **Language:** Portuguese
- **Number of Epochs:** 5
- **Batch size:** 24
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 0.35 KgCO2 (Singapore)
- **Total Energy Consumption:** 0.73 kWh

This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.

## Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

`<|startofinstruction|>`O que é um modelo de linguagem?`<|endofinstruction|>`Um modelo de linguagem é uma distribuição de probabilidade sobre um vocabulário.`<|endofcompletion|>`

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-portuguese-124M')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-portuguese-124M')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
  add_special_tokens=False,
  return_tensors="pt").to(device)

responses = aira.generate(**inputs,	num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
	print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```

The model will output something like:

```markdown
>>> Question: 👤 Qual a capital do Brasil?

>>>Response 1: 🤖 A capital do Brasil é Brasília.
>>>Response 2: 🤖 A capital do Brasil é Brasília.
```

## Limitations

- **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.

- **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.

- **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.

## Evaluation

| Model                                                                                 | Average   | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) |
|---------------------------------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
| [Aira-2-portuguese-124M](https://huggingface.co/nicholasKluge/Aira-2-portuguese-124M) | **32.73** | **24.87**                               | 40.60                                          | None                                        |
| Gpt2-small-portuguese                                                                 | 31.96     | 22.48                                   | **41.44**                                      | None                                        |


* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). The ToxiGen evaluation was not performed because the task is not available in Portuguese. Thanks to [Laiviet](https://github.com/laiviet/lm-evaluation-harness) for translating some of the tasks in the LM-Evaluation-Harness. 

## Cite as 🤗

```latex
@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://github.com/Nkluge-correa/Aira},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
}

@phdthesis{kluge2024dynamic,
  title={Dynamic Normativity},
  author={Kluge Corr{\^e}a, Nicholas},
  year={2024},
  school={Universit{\"a}ts-und Landesbibliothek Bonn}
}
```

## License

Aira-2-portuguese-124M is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.