nicholasKluge commited on
Commit
28c8f56
·
1 Parent(s): 1bb59a6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +153 -0
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - ruanchaves/faquad-nli
5
+ language:
6
+ - pt
7
+ metrics:
8
+ - accuracy
9
+ library_name: transformers
10
+ pipeline_tag: text-classification
11
+ tags:
12
+ - textual-entailment
13
+ ---
14
+
15
+ ## neuralmind/bert-base-portuguese-cased
16
+
17
+ | Epoch | Training Loss | Validation Loss | Accuracy |
18
+ |-------|----------------|------------------|----------|
19
+ | 1 | 0.123456 | 0.241125 | 0.921538 |
20
+ | 2 | 0.234567 | 0.246445 | 0.927692 |
21
+ | 3 | 0.345678 | 0.287228 | 0.930769 |
22
+
23
+ ## nicholasKluge/Teeny-tiny-llama-162m-faquad
24
+
25
+ | Epoch | Training Loss | Validation Loss | Accuracy |
26
+ |-------|----------------|------------------|----------|
27
+ | 1 | 0.123456 | 0.307782 | 0.893846 |
28
+ | 2 | 0.234567 | 0.317620 | 0.883077 |
29
+ | 3 | 0.345678 | 0.340426 | 0.900000 |
30
+
31
+ ## pierreguillou/gpt2-small-portuguese
32
+
33
+ | Epoch | Training Loss | Validation Loss | Accuracy |
34
+ |-------|----------------|------------------|----------|
35
+ | 1 | 0.123456 | 0.410291 | 0.820000 |
36
+ | 2 | 0.234567 | 0.424272 | 0.847692 |
37
+ | 3 | 0.345678 | 0.410154 | 0.864615 |
38
+
39
+
40
+ ```python
41
+ # Faquad-nli
42
+ ! pip install transformers datasets evaluate accelerate -q
43
+
44
+ import evaluate
45
+ import numpy as np
46
+ from huggingface_hub import login
47
+ from datasets import load_dataset, Dataset, DatasetDict
48
+ from transformers import AutoTokenizer, DataCollatorWithPadding
49
+ from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
50
+
51
+ # Basic fine-tuning arguments
52
+ token="your_token"
53
+ task="ruanchaves/faquad-nli"
54
+ model_name="nicholasKluge/Teeny-tiny-llama-162m"
55
+ output_dir="checkpoint"
56
+ learning_rate=4e-5
57
+ per_device_train_batch_size=16
58
+ per_device_eval_batch_size=16
59
+ num_train_epochs=3
60
+ weight_decay=0.01
61
+ evaluation_strategy="epoch"
62
+ save_strategy="epoch"
63
+ hub_model_id="nicholasKluge/Teeny-tiny-llama-162m-faquad"
64
+
65
+ # Login on the hub to load and push
66
+ login(token=token)
67
+
68
+ # Load the task
69
+ dataset = load_dataset(task)
70
+
71
+ # Create a `ModelForSequenceClassification`
72
+ model = AutoModelForSequenceClassification.from_pretrained(
73
+ model_name,
74
+ num_labels=2,
75
+ id2label={0: "UNSUITABLE", 1: "SUITABLE"},
76
+ label2id={"UNSUITABLE": 0, "SUITABLE": 1}
77
+ )
78
+
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
80
+
81
+ # If model does not have a pad_token, we need to add it
82
+ #tokenizer.pad_token = tokenizer._eos_token
83
+ #model.config.pad_token_id = model.config.eos_token_id
84
+
85
+ # Preprocess if needed
86
+ train = dataset['train'].to_pandas()
87
+ train['text'] = train['question'] + tokenizer.bos_token + train['answer'] + tokenizer.eos_token
88
+ train = train[['text', 'label']]
89
+ train.labels = train.label.astype(int)
90
+ train = Dataset.from_pandas(train)
91
+
92
+ test = dataset['test'].to_pandas()
93
+ test['text'] = test['question'] + tokenizer.bos_token + test['answer'] + tokenizer.eos_token
94
+ test = test[['text', 'label']]
95
+ test.labels = test.label.astype(int)
96
+ test = Dataset.from_pandas(test)
97
+
98
+ dataset = DatasetDict({
99
+ "train": train,
100
+ "test": test
101
+ })
102
+
103
+ # Pre process the dataset
104
+ def preprocess_function(examples):
105
+ return tokenizer(examples["text"], truncation=True)
106
+
107
+ dataset_tokenized = dataset.map(preprocess_function, batched=True)
108
+
109
+ # Create a simple data collactor
110
+ data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
111
+
112
+ # Use accuracy as evaluation metric
113
+ accuracy = evaluate.load("accuracy")
114
+
115
+ # Function to compute accuracy
116
+ def compute_metrics(eval_pred):
117
+ predictions, labels = eval_pred
118
+ predictions = np.argmax(predictions, axis=1)
119
+ return accuracy.compute(predictions=predictions, references=labels)
120
+
121
+ # Define training arguments
122
+ training_args = TrainingArguments(
123
+ output_dir=output_dir,
124
+ learning_rate=learning_rate,
125
+ per_device_train_batch_size=per_device_train_batch_size,
126
+ per_device_eval_batch_size=per_device_eval_batch_size,
127
+ num_train_epochs=num_train_epochs,
128
+ weight_decay=weight_decay,
129
+ evaluation_strategy=evaluation_strategy,
130
+ save_strategy=save_strategy,
131
+ load_best_model_at_end=True,
132
+ push_to_hub=True,
133
+ hub_token=token,
134
+ hub_private_repo=True,
135
+ hub_model_id=hub_model_id,
136
+ tf32=True,
137
+ )
138
+
139
+ # Define the Trainer
140
+ trainer = Trainer(
141
+ model=model,
142
+ args=training_args,
143
+ train_dataset=dataset_tokenized["train"],
144
+ eval_dataset=dataset_tokenized["test"],
145
+ tokenizer=tokenizer,
146
+ data_collator=data_collator,
147
+ compute_metrics=compute_metrics,
148
+ )
149
+
150
+ # Train!
151
+ trainer.train()
152
+
153
+ ```