nick-leland commited on
Commit
9814135
·
1 Parent(s): 50a62d2

Updated README

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -1,3 +1,60 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  ---
 
 
1
  ---
2
+ tags:
3
+ - tabular
4
+ - regression
5
+ - tabular-regression
6
+ - dota
7
+ ---
8
+
9
+ ## Validation Metrics
10
+
11
+ - R2: 0.63
12
+ - MSE: 2428.91
13
+ - MAE: 34.33
14
+ - RMSE: 49.28
15
+
16
+ ## Usage
17
+
18
+ ```python
19
+ import numpy as np
20
+ from numpy import random
21
+ import pandas as pd
22
+ import onnxruntime as ort
23
+
24
+ # Load the saved file
25
+ model_path = "rd2l_forest.onnx"
26
+ session = ort.InferenceSession(model_path)
27
+
28
+ # Define default naming scheme
29
+ input_name = session.get_inputs()[0].name
30
+ output_name = session.get_outputs()[0].name
31
+
32
+ def prediction(input_data : np.ndarray) -> float
33
+ """
34
+ Performs inference on the loaded ONNX model using the provided input data.
35
+
36
+ Args:
37
+ input_data (np.ndarray): An array of size (263,), this represents all of a singular players information
38
+
39
+ Returns:
40
+ float: The predicted cost of the player
41
+
42
+ """
43
+
44
+ # Convert to onnx input format and reshape
45
+ input_data = input_data.to_numpy(dtype=np.float32).reshape(1, -1)
46
+
47
+ # Create prediction
48
+ predictions = session.run([output_name], {input_name: input_data})
49
+
50
+ # Convert to individual value
51
+ return round(float(predictions[0][0][0]), 2)
52
+
53
+ sample_df = pd.DataFrame(np.random.rand(263))
54
+
55
+ prediction(sample_df)
56
+ ```
57
+ ---
58
  license: mit
59
  ---
60
+