Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,26 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
metrics:
|
5 |
- accuracy
|
6 |
- f1
|
7 |
- precision
|
8 |
- recall
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
model-index:
|
10 |
- name: finbert-tone-finetuned-fintwitter-classification
|
11 |
results: []
|
@@ -16,7 +31,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
# finbert-tone-finetuned-fintwitter-classification
|
18 |
|
19 |
-
This model is a fine-tuned version of [yiyanghkust/finbert-tone](https://huggingface.co/yiyanghkust/finbert-tone) on
|
20 |
It achieves the following results on the evaluation set:
|
21 |
- Loss: 1.4236
|
22 |
- Accuracy: 0.8823
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
+
- financial-tweets-sentiment-analysis
|
5 |
+
- sentiment-analysis
|
6 |
+
- generated_from_trainer
|
7 |
+
- financial
|
8 |
+
- stocks
|
9 |
+
- sentiment
|
10 |
+
datasets:
|
11 |
+
- zeroshot/twitter-financial-news-sentiment
|
12 |
metrics:
|
13 |
- accuracy
|
14 |
- f1
|
15 |
- precision
|
16 |
- recall
|
17 |
+
widget:
|
18 |
+
- text: "$LOW - Lowe's racks up another positive rating despite recession risk"
|
19 |
+
example_title: "Bullish Sentiment"
|
20 |
+
- text: "$HNHAF $HNHPD $AAPL - Trendforce cuts iPhone estimate after Foxconn delay"
|
21 |
+
example_title: "Bearish Sentiment"
|
22 |
+
- text: "Coin Toss: Morgan Stanley Raises Tesla Bull Case To $500, Keeps Bear Case At $10"
|
23 |
+
example_title: "Neutral Sentiment"
|
24 |
model-index:
|
25 |
- name: finbert-tone-finetuned-fintwitter-classification
|
26 |
results: []
|
|
|
31 |
|
32 |
# finbert-tone-finetuned-fintwitter-classification
|
33 |
|
34 |
+
This model is a fine-tuned version of [yiyanghkust/finbert-tone](https://huggingface.co/yiyanghkust/finbert-tone) on [Twitter Financial News](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
- Loss: 1.4236
|
37 |
- Accuracy: 0.8823
|