File size: 7,193 Bytes
2efdb7a 979bcd3 2efdb7a 99efd76 2efdb7a 99efd76 2efdb7a 99efd76 2efdb7a 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 99efd76 67944ab 2efdb7a c55afaf 2efdb7a c55afaf 2efdb7a 54ae2f2 2efdb7a c55afaf 2efdb7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- banking77
metrics:
- accuracy
widget:
- text: 'Can I track the card you sent to me? '
example_title: Card Arrival Example
- text: Can you explain your exchange rate policy to me?
example_title: Exchange Rate Example
- text: I can't pay by my credit card
example_title: Card Not Working Example
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-banking77-classification
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: banking77
type: banking77
args: default
metrics:
- type: accuracy
value: 0.924025974025974
name: Accuracy
- task:
type: text-classification
name: Text Classification
dataset:
name: banking77
type: banking77
config: default
split: test
metrics:
- type: accuracy
value: 0.924025974025974
name: Accuracy
verified: true
- type: precision
value: 0.9278003086307286
name: Precision Macro
verified: true
- type: precision
value: 0.924025974025974
name: Precision Micro
verified: true
- type: precision
value: 0.9278003086307287
name: Precision Weighted
verified: true
- type: recall
value: 0.9240259740259743
name: Recall Macro
verified: true
- type: recall
value: 0.924025974025974
name: Recall Micro
verified: true
- type: recall
value: 0.924025974025974
name: Recall Weighted
verified: true
- type: f1
value: 0.9243068139192414
name: F1 Macro
verified: true
- type: f1
value: 0.924025974025974
name: F1 Micro
verified: true
- type: f1
value: 0.9243068139192416
name: F1 Weighted
verified: true
- type: loss
value: 0.31516405940055847
name: loss
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-banking77-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the banking77 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3152
- Accuracy: 0.9240
- F1 Score: 0.9243
## Model description
This is my first fine-tuning experiment using Hugging Face.
Using distilBERT as a pretrained model, I trained a classifier for online banking queries.
It could be useful for addressing tickets.
## Intended uses & limitations
The model can be used on text classification. In particular is fine tuned on banking domain.
## Training and evaluation data
The dataset used is [banking77](https://huggingface.co/datasets/banking77)
The 77 labels are:
|label|intent|
|:---:|:----:|
|0|activate_my_card|
|1|age_limit|
|2|apple_pay_or_google_pay|
|3|atm_support|
|4|automatic_top_up|
|5|balance_not_updated_after_bank_transfer|
|6|balance_not_updated_after_cheque_or_cash_deposit|
|7|beneficiary_not_allowed|
|8|cancel_transfer|
|9|card_about_to_expire|
|10|card_acceptance|
|11|card_arrival|
|12|card_delivery_estimate|
|13|card_linking|
|14|card_not_working|
|15|card_payment_fee_charged|
|16|card_payment_not_recognised|
|17|card_payment_wrong_exchange_rate|
|18|card_swallowed|
|19|cash_withdrawal_charge|
|20|cash_withdrawal_not_recognised|
|21|change_pin|
|22|compromised_card|
|23|contactless_not_working|
|24|country_support|
|25|declined_card_payment|
|26|declined_cash_withdrawal|
|27|declined_transfer|
|28|direct_debit_payment_not_recognised|
|29|disposable_card_limits|
|30|edit_personal_details|
|31|exchange_charge|
|32|exchange_rate|
|33|exchange_via_app|
|34|extra_charge_on_statement|
|35|failed_transfer|
|36|fiat_currency_support|
|37|get_disposable_virtual_card|
|38|get_physical_card|
|39|getting_spare_card|
|40|getting_virtual_card|
|41|lost_or_stolen_card|
|42|lost_or_stolen_phone|
|43|order_physical_card|
|44|passcode_forgotten|
|45|pending_card_payment|
|46|pending_cash_withdrawal|
|47|pending_top_up|
|48|pending_transfer|
|49|pin_blocked|
|50|receiving_money|
|51|Refund_not_showing_up|
|52|request_refund|
|53|reverted_card_payment?|
|54|supported_cards_and_currencies|
|55|terminate_account|
|56|top_up_by_bank_transfer_charge|
|57|top_up_by_card_charge|
|58|top_up_by_cash_or_cheque|
|59|top_up_failed|
|60|top_up_limits|
|61|top_up_reverted|
|62|topping_up_by_card|
|63|transaction_charged_twice|
|64|transfer_fee_charged|
|65|transfer_into_account|
|66|transfer_not_received_by_recipient|
|67|transfer_timing|
|68|unable_to_verify_identity|
|69|verify_my_identity|
|70|verify_source_of_funds|
|71|verify_top_up|
|72|virtual_card_not_working|
|73|visa_or_mastercard|
|74|why_verify_identity|
|75|wrong_amount_of_cash_received|
|76|wrong_exchange_rate_for_cash_withdrawal|
## Training procedure
```
from transformers import pipeline
pipe = pipeline("text-classification", model="nickprock/distilbert-base-uncased-banking77-classification")
pipe("I can't pay by my credit card")
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 3.8732 | 1.0 | 157 | 3.1476 | 0.5370 | 0.4881 |
| 2.5598 | 2.0 | 314 | 1.9780 | 0.6916 | 0.6585 |
| 1.5863 | 3.0 | 471 | 1.2239 | 0.8042 | 0.7864 |
| 0.9829 | 4.0 | 628 | 0.8067 | 0.8565 | 0.8487 |
| 0.6274 | 5.0 | 785 | 0.5837 | 0.8799 | 0.8752 |
| 0.4304 | 6.0 | 942 | 0.4630 | 0.9042 | 0.9040 |
| 0.3106 | 7.0 | 1099 | 0.3982 | 0.9088 | 0.9087 |
| 0.2238 | 8.0 | 1256 | 0.3587 | 0.9110 | 0.9113 |
| 0.1708 | 9.0 | 1413 | 0.3351 | 0.9208 | 0.9208 |
| 0.1256 | 10.0 | 1570 | 0.3242 | 0.9179 | 0.9182 |
| 0.0981 | 11.0 | 1727 | 0.3136 | 0.9211 | 0.9214 |
| 0.0745 | 12.0 | 1884 | 0.3151 | 0.9211 | 0.9213 |
| 0.0601 | 13.0 | 2041 | 0.3089 | 0.9218 | 0.9220 |
| 0.0482 | 14.0 | 2198 | 0.3158 | 0.9214 | 0.9216 |
| 0.0402 | 15.0 | 2355 | 0.3126 | 0.9224 | 0.9226 |
| 0.0344 | 16.0 | 2512 | 0.3143 | 0.9231 | 0.9233 |
| 0.0298 | 17.0 | 2669 | 0.3156 | 0.9231 | 0.9233 |
| 0.0272 | 18.0 | 2826 | 0.3134 | 0.9244 | 0.9247 |
| 0.0237 | 19.0 | 2983 | 0.3156 | 0.9244 | 0.9246 |
| 0.0229 | 20.0 | 3140 | 0.3152 | 0.9240 | 0.9243 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|