File size: 4,513 Bytes
01e337b
 
 
 
72fdc69
 
01e337b
 
daf2a0a
72fdc69
daf2a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fc1ff
 
 
 
 
 
 
 
daf2a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72fdc69
 
daf2a0a
 
 
 
72fdc69
 
daf2a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72fdc69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
- multimodal
license: cc-by-nc-sa-4.0
---

# ImageBind: One Embedding Space To Bind Them All

**[FAIR, Meta AI](https://ai.facebook.com/research/)** 

To appear at CVPR 2023 (*Highlighted paper*)

[[`Paper`](https://facebookresearch.github.io/ImageBind/paper)] [[`Blog`](https://ai.facebook.com/blog/imagebind-six-modalities-binding-ai/)] [[`Demo`](https://imagebind.metademolab.com/)] [[`Supplementary Video`](https://dl.fbaipublicfiles.com/imagebind/imagebind_video.mp4)] [[`BibTex`](#citing-imagebind)]

PyTorch implementation and pretrained models for ImageBind. For details, see the paper: **[ImageBind: One Embedding Space To Bind Them All](https://facebookresearch.github.io/ImageBind/paper)**.

ImageBind learns a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data. It enables novel emergent applications ‘out-of-the-box’ including cross-modal retrieval, composing modalities with arithmetic, cross-modal detection and generation.



![ImageBind](https://user-images.githubusercontent.com/8495451/236859695-ffa13364-3e39-4d99-a8da-fbfab17f9a6b.gif)

## ImageBind model

Emergent zero-shot classification performance.

<table style="margin: auto">
  <tr>
    <th>Model</th>
    <th><span style="color:blue">IN1k</span></th>
    <th><span style="color:purple">K400</span></th>
    <th><span style="color:green">NYU-D</span></th>
    <th><span style="color:LightBlue">ESC</span></th>
    <th><span style="color:orange">LLVIP</span></th>
    <th><span style="color:purple">Ego4D</span></th>
  </tr>
  <tr>
    <td>imagebind_huge</td>
    <td align="right">77.7</td>
    <td align="right">50.0</td>
    <td align="right">54.0</td>
    <td align="right">66.9</td>
    <td align="right">63.4</td>
    <td align="right">25.0</td>
  </tr>
  
</table>

## Usage

First git clone the repository:

```bash
git clone -b feature/add_hf https://github.com/nielsrogge/ImageBind.git
cd ImageBind
```

Next, install pytorch 1.13+ and other 3rd party dependencies.

```shell
conda create --name imagebind python=3.8 -y
conda activate imagebind

pip install .
```

For windows users, you might need to install `soundfile` for reading/writing audio files. (Thanks @congyue1977)

```
pip install soundfile
```


Extract and compare features across modalities (e.g. Image, Text and Audio).

```python
from imagebind import data
import torch
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
from imagebind.models.imagebind_model import ImageBindModel

text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]

device = "cuda:0" if torch.cuda.is_available() else "cpu"

model = ImageBindModel.from_pretrained("nielsr/imagebind-huge")
model.eval()
model.to(device)

# Load data
inputs = {
    ModalityType.TEXT: data.load_and_transform_text(text_list, device),
    ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
    ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
}

with torch.no_grad():
    embeddings = model(inputs)

print(
    "Vision x Text: ",
    torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1),
)
print(
    "Audio x Text: ",
    torch.softmax(embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1),
)
print(
    "Vision x Audio: ",
    torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.AUDIO].T, dim=-1),
)

# Expected output:
#
# Vision x Text:
# tensor([[9.9761e-01, 2.3694e-03, 1.8612e-05],
#         [3.3836e-05, 9.9994e-01, 2.4118e-05],
#         [4.7997e-05, 1.3496e-02, 9.8646e-01]])
#
# Audio x Text:
# tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])
#
# Vision x Audio:
# tensor([[0.8070, 0.1088, 0.0842],
#         [0.1036, 0.7884, 0.1079],
#         [0.0018, 0.0022, 0.9960]])

```


## License

ImageBind code and model weights are released under the CC-BY-NC 4.0 license. See [LICENSE](LICENSE) for additional details.

## Citation

```
@inproceedings{girdhar2023imagebind,
  title={ImageBind: One Embedding Space To Bind Them All},
  author={Girdhar, Rohit and El-Nouby, Alaaeldin and Liu, Zhuang
and Singh, Mannat and Alwala, Kalyan Vasudev and Joulin, Armand and Misra, Ishan},
  booktitle={CVPR},
  year={2023}
}
```