mgoin commited on
Commit
eb7d5c9
·
verified ·
1 Parent(s): 4b84c3e

Upload folder using huggingface_hub

Browse files
config.json CHANGED
@@ -69,8 +69,154 @@
69
  }
70
  },
71
  "format": "int-quantized",
72
- "global_compression_ratio": 1.199964041858949,
73
  "ignore": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  "lm_head"
75
  ],
76
  "kv_cache_scheme": null,
 
69
  }
70
  },
71
  "format": "int-quantized",
72
+ "global_compression_ratio": 1.1045610202550211,
73
  "ignore": [
74
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.k_proj",
75
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.v_proj",
76
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.q_proj",
77
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.out_proj",
78
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.mlp.fc1",
79
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.mlp.fc2",
80
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.k_proj",
81
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.v_proj",
82
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.q_proj",
83
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.out_proj",
84
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.mlp.fc1",
85
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.mlp.fc2",
86
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.k_proj",
87
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.v_proj",
88
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.q_proj",
89
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.out_proj",
90
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.mlp.fc1",
91
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.mlp.fc2",
92
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.k_proj",
93
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.v_proj",
94
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.q_proj",
95
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.out_proj",
96
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.mlp.fc1",
97
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.mlp.fc2",
98
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.k_proj",
99
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.v_proj",
100
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.q_proj",
101
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.out_proj",
102
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.mlp.fc1",
103
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.mlp.fc2",
104
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.k_proj",
105
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.v_proj",
106
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.q_proj",
107
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.out_proj",
108
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.mlp.fc1",
109
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.mlp.fc2",
110
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.k_proj",
111
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.v_proj",
112
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.q_proj",
113
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.out_proj",
114
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.mlp.fc1",
115
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.mlp.fc2",
116
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.k_proj",
117
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.v_proj",
118
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.q_proj",
119
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.out_proj",
120
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.mlp.fc1",
121
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.mlp.fc2",
122
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.k_proj",
123
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.v_proj",
124
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.q_proj",
125
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.out_proj",
126
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.mlp.fc1",
127
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.mlp.fc2",
128
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.k_proj",
129
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.v_proj",
130
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.q_proj",
131
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.out_proj",
132
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.mlp.fc1",
133
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.mlp.fc2",
134
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.k_proj",
135
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.v_proj",
136
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.q_proj",
137
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.out_proj",
138
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.mlp.fc1",
139
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.mlp.fc2",
140
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.k_proj",
141
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.v_proj",
142
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.q_proj",
143
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.out_proj",
144
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.mlp.fc1",
145
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.mlp.fc2",
146
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.k_proj",
147
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.v_proj",
148
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.q_proj",
149
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.out_proj",
150
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.mlp.fc1",
151
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.mlp.fc2",
152
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.k_proj",
153
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.v_proj",
154
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.q_proj",
155
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.out_proj",
156
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.mlp.fc1",
157
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.mlp.fc2",
158
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.k_proj",
159
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.v_proj",
160
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.q_proj",
161
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.out_proj",
162
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.mlp.fc1",
163
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.mlp.fc2",
164
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.k_proj",
165
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.v_proj",
166
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.q_proj",
167
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.out_proj",
168
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.mlp.fc1",
169
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.mlp.fc2",
170
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.k_proj",
171
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.v_proj",
172
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.q_proj",
173
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.out_proj",
174
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.mlp.fc1",
175
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.mlp.fc2",
176
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.k_proj",
177
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.v_proj",
178
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.q_proj",
179
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.out_proj",
180
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.mlp.fc1",
181
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.mlp.fc2",
182
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.k_proj",
183
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.v_proj",
184
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.q_proj",
185
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.out_proj",
186
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.mlp.fc1",
187
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.mlp.fc2",
188
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.k_proj",
189
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.v_proj",
190
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.q_proj",
191
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.out_proj",
192
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.mlp.fc1",
193
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.mlp.fc2",
194
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.k_proj",
195
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.v_proj",
196
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.q_proj",
197
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.out_proj",
198
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.mlp.fc1",
199
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.mlp.fc2",
200
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.k_proj",
201
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.v_proj",
202
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.q_proj",
203
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.out_proj",
204
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.mlp.fc1",
205
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.mlp.fc2",
206
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.k_proj",
207
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.v_proj",
208
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.q_proj",
209
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.out_proj",
210
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.mlp.fc1",
211
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.mlp.fc2",
212
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.k_proj",
213
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.v_proj",
214
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.q_proj",
215
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.out_proj",
216
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.mlp.fc1",
217
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.mlp.fc2",
218
+ "model.vision_embed_tokens.img_projection.0",
219
+ "model.vision_embed_tokens.img_projection.2",
220
  "lm_head"
221
  ],
222
  "kv_cache_scheme": null,
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5cc639128711d712dfe12f6130b0729852aa632bb6fc295b73d3a8c4b449e738
3
- size 4544968752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38893bcc5528dcb64c22b82f08595c0f2202a93bdf0eab4e1095f961c5fe0775
3
+ size 4868499264
preprocessor_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "processing_phi3_v.Phi3VImageProcessor",
4
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
5
+ },
6
+ "do_convert_rgb": true,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "Phi3VImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "num_crops": 4,
19
+ "num_img_tokens": 144,
20
+ "processor_class": "Phi3VProcessor"
21
+ }
processing_phi3_v.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Processor class for Phi3-V.
18
+ """
19
+ import re
20
+ from typing import List, Optional, Union
21
+
22
+ import torch
23
+
24
+ import transformers
25
+ from transformers.feature_extraction_utils import BatchFeature
26
+ from transformers.image_utils import ImageInput
27
+ from transformers.processing_utils import ProcessorMixin
28
+ from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
+ from transformers.utils import TensorType
30
+
31
+
32
+ """Image processor class for Phi3-V."""
33
+
34
+ from typing import List, Optional, Union
35
+
36
+ import numpy as np
37
+
38
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
39
+ from transformers.image_transforms import (
40
+ convert_to_rgb,
41
+ )
42
+ from transformers.image_utils import (
43
+ OPENAI_CLIP_MEAN,
44
+ OPENAI_CLIP_STD,
45
+ ImageInput,
46
+ make_list_of_images,
47
+ valid_images,
48
+ )
49
+ from transformers.utils import TensorType, is_vision_available, logging
50
+
51
+ from transformers import AutoImageProcessor
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ if is_vision_available():
57
+ from PIL import Image
58
+
59
+ import torch
60
+ import torchvision
61
+
62
+ def padding_336(b):
63
+ width, height = b.size
64
+ tar = int(np.ceil(height / 336) * 336)
65
+ top_padding = int((tar - height)/2)
66
+ bottom_padding = tar - height - top_padding
67
+ left_padding = 0
68
+ right_padding = 0
69
+ b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
70
+
71
+ return b
72
+
73
+ def calc_padded_size(width, height, padding_unit=336):
74
+ target_height = int(np.ceil(height / padding_unit) * padding_unit)
75
+ top_padding = int((target_height - height) / 2)
76
+ bottom_padding = target_height - height - top_padding
77
+ left_padding = 0
78
+ right_padding = 0
79
+ padded_width = width + left_padding + right_padding
80
+ padded_height = height + top_padding + bottom_padding
81
+ return padded_width, padded_height
82
+
83
+ def HD_transform(img, hd_num=16):
84
+ width, height = img.size
85
+ trans = False
86
+ if width < height:
87
+ img = img.transpose(Image.TRANSPOSE)
88
+ trans = True
89
+ width, height = img.size
90
+ ratio = (width/ height)
91
+ scale = 1
92
+ while scale*np.ceil(scale/ratio) <= hd_num:
93
+ scale += 1
94
+ scale -= 1
95
+ new_w = int(scale * 336)
96
+ new_h = int(new_w / ratio)
97
+
98
+ img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
99
+ img = padding_336(img)
100
+ width, height = img.size
101
+ if trans:
102
+ img = img.transpose(Image.TRANSPOSE)
103
+
104
+ return img
105
+
106
+ def calc_hd_transform_size(width, height, hd_num=16):
107
+ transposed = False
108
+ if width < height:
109
+ width, height = height, width
110
+ transposed = True
111
+
112
+ ratio = width / height
113
+ scale = 1
114
+ while scale * np.ceil(scale / ratio) <= hd_num:
115
+ scale += 1
116
+ scale -= 1
117
+
118
+ new_width = int(scale * 336)
119
+ new_height = int(new_width / ratio)
120
+
121
+ padded_width, padded_height = calc_padded_size(new_width, new_height)
122
+
123
+ if transposed:
124
+ padded_width, padded_height = padded_height, padded_width
125
+
126
+ return padded_width, padded_height
127
+
128
+ def pad_to_max_num_crops_tensor(images, max_crops=5):
129
+ """
130
+ images: B x 3 x H x W, B<=max_crops
131
+ """
132
+ B, _, H, W = images.shape
133
+ if B < max_crops:
134
+ pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
135
+ images = torch.cat([images, pad], dim=0)
136
+ return images
137
+
138
+
139
+ class Phi3VImageProcessor(BaseImageProcessor):
140
+ r"""
141
+ Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
142
+ for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
143
+
144
+ Args:
145
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
146
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
147
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
148
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
149
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
150
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
151
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
152
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
153
+ Whether to convert the image to RGB.
154
+ """
155
+
156
+ model_input_names = ["pixel_values"]
157
+
158
+ def __init__(
159
+ self,
160
+ num_crops: int = 1,
161
+ image_mean: Optional[Union[float, List[float]]] = None,
162
+ image_std: Optional[Union[float, List[float]]] = None,
163
+ do_convert_rgb: bool = True,
164
+ **kwargs,
165
+ ) -> None:
166
+ super().__init__(**kwargs)
167
+ self.num_crops = num_crops
168
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
169
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
170
+ self.do_convert_rgb = do_convert_rgb
171
+
172
+ def calc_num_image_tokens(
173
+ self,
174
+ images: ImageInput
175
+ ):
176
+ """ Calculate the number of image tokens for each image.
177
+ Args:
178
+ images (`ImageInput`):
179
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
180
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
181
+ """
182
+ images = make_list_of_images(images)
183
+
184
+ if not valid_images(images):
185
+ raise ValueError(
186
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
187
+ "torch.Tensor, tf.Tensor or jax.ndarray."
188
+ )
189
+
190
+ images = [image.convert('RGB') for image in images]
191
+ # (H, W, C)
192
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
193
+ shapes = [[im.size[1], im.size[0]] for im in elems]
194
+ num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
195
+ return num_img_tokens
196
+
197
+ def calc_num_image_tokens_from_image_size(self, width, height):
198
+ """
199
+ Calculate the number of image tokens for a given image size.
200
+ Args:
201
+ width (`int`): Width of the image.
202
+ height (`int`): Height of the image.
203
+ """
204
+ new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
205
+ num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
206
+ return num_img_tokens
207
+
208
+ def preprocess(
209
+ self,
210
+ images: ImageInput,
211
+ image_mean: Optional[Union[float, List[float]]] = None,
212
+ image_std: Optional[Union[float, List[float]]] = None,
213
+ do_convert_rgb: bool = None,
214
+ return_tensors: Optional[Union[str, TensorType]] = None,
215
+ ):
216
+ """
217
+ Args:
218
+ images (`ImageInput`):
219
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
220
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
221
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
222
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
223
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
224
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
225
+ `True`.
226
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
227
+ Whether to convert the image to RGB.
228
+ return_tensors (`str` or `TensorType`, *optional*):
229
+ The type of tensors to return. Can be one of:
230
+ - Unset: Return a list of `np.ndarray`.
231
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
232
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
233
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
234
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
235
+ """
236
+ image_mean = image_mean if image_mean is not None else self.image_mean
237
+ image_std = image_std if image_std is not None else self.image_std
238
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
239
+
240
+ images = make_list_of_images(images)
241
+
242
+ if not valid_images(images):
243
+ raise ValueError(
244
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
245
+ "torch.Tensor, tf.Tensor or jax.ndarray."
246
+ )
247
+
248
+ if do_convert_rgb:
249
+ images = [convert_to_rgb(image) for image in images]
250
+
251
+ image_sizes = []
252
+ img_processor = torchvision.transforms.Compose([
253
+ torchvision.transforms.ToTensor(),
254
+ torchvision.transforms.Normalize(image_mean, image_std)
255
+ ])
256
+
257
+ # PIL images
258
+ # HD_transform pad images to size of multiiply of 336, 336
259
+ # convert to RGB first
260
+ images = [image.convert('RGB') for image in images]
261
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
262
+ # tensor transform and normalize
263
+ hd_images = [img_processor(im) for im in elems]
264
+ # create global image
265
+ global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
266
+
267
+ # [(3, h, w)], where h, w is multiple of 336
268
+ shapes = [[im.size(1), im.size(2)] for im in hd_images]
269
+ num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
270
+ # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
271
+ # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
272
+ hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
273
+ # concat global image and local image
274
+ hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
275
+
276
+ # pad to max_num_crops
277
+ image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
278
+ image_transformed = torch.stack(image_transformed, dim=0)
279
+ image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
280
+ padded_images = image_transformed
281
+ image_sizes = shapes
282
+
283
+ data = {"pixel_values": padded_images,
284
+ "image_sizes": image_sizes,
285
+ "num_img_tokens": num_img_tokens
286
+ }
287
+
288
+ return BatchFeature(data=data, tensor_type=return_tensors)
289
+
290
+ AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
291
+
292
+ transformers.Phi3VImageProcessor = Phi3VImageProcessor
293
+
294
+ class Phi3VProcessor(ProcessorMixin):
295
+ r"""
296
+ Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
297
+
298
+ [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
299
+ [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
300
+
301
+ Args:
302
+ image_processor ([`Phi3VImageProcessor`], *optional*):
303
+ The image processor is a required input.
304
+ tokenizer ([`LlamaTokenizerFast`], *optional*):
305
+ The tokenizer is a required input.
306
+ """
307
+
308
+ attributes = ["image_processor", "tokenizer"]
309
+ image_processor_class = "Phi3VImageProcessor"
310
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
311
+ special_image_token = "<|image|>"
312
+
313
+ def __init__(self, image_processor, tokenizer):
314
+ self.image_processor = image_processor
315
+ self.tokenizer = tokenizer
316
+ self.num_img_tokens = image_processor.num_img_tokens
317
+ self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
318
+
319
+ def __call__(
320
+ self,
321
+ text: Union[TextInput, List[TextInput]],
322
+ images: ImageInput = None,
323
+ padding: Union[bool, str, PaddingStrategy] = False,
324
+ truncation: Union[bool, str, TruncationStrategy] = None,
325
+ max_length=None,
326
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
327
+ ) -> BatchFeature:
328
+ """
329
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
330
+ and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
331
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
332
+ Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
333
+ of the above two methods for more information.
334
+
335
+ Args:
336
+ text (`str`, `List[str]`, `List[List[str]]`):
337
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
338
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
339
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
340
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
341
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
342
+ tensor. Both channels-first and channels-last formats are supported.
343
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
344
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
345
+ index) among:
346
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
347
+ sequence if provided).
348
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
349
+ acceptable input length for the model if that argument is not provided.
350
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
351
+ lengths).
352
+ max_length (`int`, *optional*):
353
+ Maximum length of the returned list and optionally padding length (see above).
354
+ truncation (`bool`, *optional*):
355
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
356
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
357
+ If set, will return tensors of a particular framework. Acceptable values are:
358
+
359
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
360
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
361
+ - `'np'`: Return NumPy `np.ndarray` objects.
362
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
363
+
364
+ Returns:
365
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
366
+
367
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
368
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
369
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
370
+ `None`).
371
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
372
+ """
373
+ if images is not None:
374
+ image_inputs = self.image_processor(images, return_tensors=return_tensors)
375
+ else:
376
+ image_inputs = {}
377
+ inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
378
+ return inputs
379
+
380
+ def calc_num_image_tokens(self, images: ImageInput):
381
+ """ Calculate the number of image tokens for each image.
382
+ Args:
383
+ images (`ImageInput`):
384
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
385
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
386
+ """
387
+ return self.image_processor.calc_num_image_tokens(images)
388
+
389
+ def calc_num_image_tokens_from_image_size(self, width, height):
390
+ """ Calculate the number of image token for an image with given width and height.
391
+ Args:
392
+ width (`int`):
393
+ Width of the image.
394
+ height (`int`):
395
+ Height of the image.
396
+ """
397
+ return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
398
+
399
+
400
+ @property
401
+ def special_image_token_id(self):
402
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
403
+
404
+ def get_special_image_token_id(self):
405
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
406
+
407
+ def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
408
+
409
+ if not len(images):
410
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
411
+ return BatchFeature(data={**model_inputs})
412
+
413
+ pattern = r"<\|image_\d+\|>"
414
+ prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
415
+
416
+ if 'num_img_tokens' in images:
417
+ num_img_tokens = images['num_img_tokens']
418
+ else:
419
+ assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
420
+ num_crops = images['num_crops']
421
+ num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
422
+
423
+ images, image_sizes = images['pixel_values'], images['image_sizes']
424
+
425
+ # image_tags needs to start from 1 to n
426
+ image_tags = re.findall(pattern, texts)
427
+ # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
428
+ # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
429
+ image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
430
+ unique_image_ids = sorted(list(set(image_ids)))
431
+ # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
432
+ # check the condition
433
+ assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
434
+ # total images must be the same as the number of image tags
435
+ assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
436
+
437
+ image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
438
+
439
+ def insert_separator(X, sep_list):
440
+ if len(X) > len(sep_list):
441
+ sep_list.append([])
442
+ return [ele for sublist in zip(X, sep_list) for ele in sublist]
443
+ input_ids = []
444
+ offset = 0
445
+ for x in insert_separator(prompt_chunks, image_ids_pad):
446
+ input_ids.extend(x[offset:])
447
+
448
+ input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
449
+ attention_mask = (input_ids > -1000000).to(torch.long)
450
+
451
+ return BatchFeature(data={"input_ids": input_ids,
452
+ "attention_mask": attention_mask,
453
+ "pixel_values": images,
454
+ "image_sizes": image_sizes})
455
+
456
+
457
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
458
+ def batch_decode(self, *args, **kwargs):
459
+ """
460
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
461
+ refer to the docstring of this method for more information.
462
+ """
463
+ return self.tokenizer.batch_decode(*args, **kwargs)
464
+
465
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
466
+ def decode(self, *args, **kwargs):
467
+ """
468
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
469
+ the docstring of this method for more information.
470
+ """
471
+ return self.tokenizer.decode(*args, **kwargs)
472
+
473
+ @property
474
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
475
+ def model_input_names(self):
476
+ tokenizer_input_names = self.tokenizer.model_input_names
477
+ image_processor_input_names = self.image_processor.model_input_names
478
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
4
+ },
5
+ "processor_class": "Phi3VProcessor"
6
+ }