Upload README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,87 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
###
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
LLM-JP-3-13B ファインチューニングモデル
|
2 |
+
|
3 |
+
# モデル詳細
|
4 |
+
|
5 |
+
ベースモデル: llm-jp/llm-jp-3-13b
|
6 |
+
アダプターモデル 1: nmczzi/llm-jp-3-13b-finetune-4
|
7 |
+
アダプターモデル 2: nmczzi/llm-jp-3-13b-finetune-4-dpo-2
|
8 |
+
アダプターモデル 2: nmczzi/llm-jp-3-13b-finetune-4-dpo-2-plus
|
9 |
+
量子化: 4ビット量子化 (QLoRA)
|
10 |
+
|
11 |
+
|
12 |
+
# インストール
|
13 |
+
必要なパッケージのインストール:
|
14 |
+
|
15 |
+
pip install -U bitsandbytes transformers accelerate datasets peft
|
16 |
+
|
17 |
+
# 使用方法
|
18 |
+
以下は、モデルの基本的な使用例です(python):
|
19 |
+
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
21 |
+
from peft import PeftModel, LoraConfig
|
22 |
+
import torch
|
23 |
+
|
24 |
+
HF_TOKEN = "有効なHuggingFaceトークン"
|
25 |
+
|
26 |
+
from google.colab import userdata
|
27 |
+
HF_TOKEN = userdata.get('HF_API_KEY')
|
28 |
+
|
29 |
+
base_model_id = "llm-jp/llm-jp-3-13b"
|
30 |
+
adapter_id_1 = "nmczzi/llm-jp-3-13b-finetune-4"
|
31 |
+
adapter_id_2 = "nmczzi/llm-jp-3-13b-finetune-4-dpo-2"
|
32 |
+
adapter_id_3 = "nmczzi/llm-jp-3-13b-finetune-4-dpo-2-plus"
|
33 |
+
|
34 |
+
### QLoRA設定
|
35 |
+
bnb_config = BitsAndBytesConfig(
|
36 |
+
load_in_4bit=True,
|
37 |
+
bnb_4bit_quant_type="nf4",
|
38 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
39 |
+
)
|
40 |
+
|
41 |
+
### モデルの読み込み
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
base_model_id,
|
44 |
+
quantization_config=bnb_config,
|
45 |
+
device_map="auto",
|
46 |
+
token=HF_TOKEN
|
47 |
+
)
|
48 |
+
|
49 |
+
### トークナイザーの読み込み
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, token=HF_TOKEN)
|
51 |
+
|
52 |
+
### ファインチューニングされたアダプターの読み込み
|
53 |
+
model = PeftModel.from_pretrained(model, adapter_id_1, token=HF_TOKEN)
|
54 |
+
model = PeftModel.from_pretrained(model, adapter_id_2, token=HF_TOKEN)
|
55 |
+
model = PeftModel.from_pretrained(model, adapter_id_3, token=HF_TOKEN)
|
56 |
+
|
57 |
+
### 生成用の関数を定義
|
58 |
+
def generate_response(input):
|
59 |
+
prompt = f"""### 指示
|
60 |
+
{input}
|
61 |
+
\#\#\# 回答
|
62 |
+
"""
|
63 |
+
|
64 |
+
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
|
65 |
+
attention_mask = torch.ones_like(tokenized_input)
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model.generate(
|
69 |
+
tokenized_input,
|
70 |
+
attention_mask=attention_mask,
|
71 |
+
max_new_tokens=100,
|
72 |
+
do_sample=False,
|
73 |
+
repetition_penalty=1.2,
|
74 |
+
pad_token_id=tokenizer.eos_token_id
|
75 |
+
)[0]
|
76 |
+
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
77 |
+
return output
|
78 |
+
|
79 |
+
### 使用例
|
80 |
+
input = "### 指示\nあなたの指示をここに入力してください\n### 回答\n"
|
81 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
82 |
+
|
83 |
+
with torch.no_grad():
|
84 |
+
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=False, repetition_penalty=1.2)
|
85 |
+
|
86 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
87 |
+
print(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|