File size: 3,984 Bytes
6d6d069
1756f3d
 
54bb4db
 
 
 
1756f3d
6d6d069
 
1756f3d
6d6d069
1756f3d
6d6d069
1756f3d
6d6d069
1756f3d
 
 
 
 
 
 
 
 
24800f1
1756f3d
24800f1
1756f3d
 
 
 
 
24800f1
1756f3d
 
 
 
 
 
24800f1
 
1756f3d
24800f1
1756f3d
24800f1
1756f3d
24800f1
1756f3d
 
 
 
 
24800f1
1756f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24800f1
1756f3d
 
24800f1
1756f3d
24800f1
1756f3d
 
24800f1
1756f3d
 
24800f1
1756f3d
24800f1
1756f3d
24800f1
1756f3d
 
24800f1
1756f3d
 
 
 
 
c9c6080
1756f3d
 
c9c6080
1756f3d
 
c9c6080
1756f3d
 
c9c6080
1756f3d
 
c9c6080
1756f3d
c9c6080
1756f3d
 
 
 
 
 
 
 
c9c6080
1756f3d
c9c6080
1756f3d
c9c6080
1756f3d
 
c9c6080
1756f3d
 
c9c6080
1756f3d
 
c9c6080
1756f3d
 
c9c6080
1756f3d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
base_model: nomic-ai/modernbert-embed
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
---

# SentenceTransformer based on nomic-ai/modernbert-embed

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed](https://huggingface.co/nomic-ai/modernbert-embed). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed](https://huggingface.co/nomic-ai/modernbert-embed) <!-- at revision c9c60802b634a5e1a47b5db9b9abf3f2517c64c2 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("nomic-ai/modernbert-embed")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.4.1+cu121
- Accelerate: 1.0.0
- Datasets: 2.18.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->