zpn commited on
Commit
1d03a35
·
verified ·
1 Parent(s): 2192e2a

Delete modeling_hf_nomic_bert.py

Browse files
Files changed (1) hide show
  1. modeling_hf_nomic_bert.py +0 -1221
modeling_hf_nomic_bert.py DELETED
@@ -1,1221 +0,0 @@
1
- # Copyright (c) 2022, Tri Dao.
2
- # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
3
- # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
4
- # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
5
-
6
- import logging
7
-
8
- # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
9
- import os
10
- import re
11
- from collections import OrderedDict
12
- from functools import partial
13
- from typing import List, Optional, Tuple, Union
14
-
15
- import torch
16
- import torch.nn as nn
17
- import torch.nn.functional as F
18
- from einops import rearrange, repeat
19
- from safetensors.torch import load_file as safe_load_file
20
- from transformers import GPT2Config, PreTrainedModel
21
- from transformers.models.bert.modeling_bert import (
22
- BaseModelOutputWithPoolingAndCrossAttentions,
23
- MaskedLMOutput,
24
- SequenceClassifierOutput,
25
- )
26
- from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
27
- from transformers.utils.hub import cached_file, get_checkpoint_shard_files
28
-
29
- from .configuration_hf_nomic_bert import NomicBertConfig
30
-
31
- logger = logging.getLogger(__name__)
32
-
33
-
34
- # adapted from flash attention, added safe serialization option for hf models
35
- def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
36
- # If not fp32, then we don't want to load directly to the GPU
37
- mapped_device = "cpu" if dtype not in [torch.float32, None] else device
38
- is_sharded = False
39
- load_safe = False
40
- resolved_archive_file = None
41
-
42
- weights_path = os.path.join(model_name, WEIGHTS_NAME)
43
- weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
44
- safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
45
- safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
46
-
47
- if os.path.isfile(weights_path):
48
- resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
49
- elif os.path.isfile(weights_index_path):
50
- resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
51
- is_sharded = True
52
- elif os.path.isfile(safe_weights_path):
53
- resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
54
- load_safe = True
55
- elif os.path.isfile(safe_weights_index_path):
56
- resolved_archive_file = cached_file(
57
- model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
58
- )
59
- is_sharded = True
60
- load_safe = True
61
- else: # Try loading from HF hub instead of from local files
62
- weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
63
- resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
64
- if resolved_archive_file is None:
65
- weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME
66
- resolved_archive_file = cached_file(model_name, weight_index, _raise_exceptions_for_missing_entries=False)
67
- if resolved_archive_file is not None:
68
- is_sharded = True
69
-
70
- load_safe = safe_serialization
71
-
72
- if resolved_archive_file is None:
73
- raise EnvironmentError(f"Model name {model_name} was not found.")
74
-
75
- if load_safe:
76
- loader = partial(safe_load_file, device=mapped_device)
77
- else:
78
- loader = partial(torch.load, map_location=mapped_device)
79
-
80
- if is_sharded:
81
- # resolved_archive_file becomes a list of files that point to the different
82
- # checkpoint shards in this case.
83
- resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
84
- state_dict = {}
85
- for sharded_file in resolved_archive_file:
86
- state_dict.update(loader(sharded_file))
87
- else:
88
- state_dict = loader(resolved_archive_file)
89
- # Convert dtype before moving to GPU to save memory
90
- if dtype is not None:
91
- state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
92
- state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
93
- return state_dict
94
-
95
-
96
- def filter_shapes(state_dict, model):
97
- """
98
- Filters the state dict to match the current model shape.
99
- """
100
- filtered_state_dict = {}
101
- for key, value in state_dict.items():
102
- if key in model.state_dict():
103
- if value.shape == model.state_dict()[key].shape:
104
- filtered_state_dict[key] = value
105
- return filtered_state_dict
106
-
107
-
108
- def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False):
109
- """
110
- Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
111
- """
112
-
113
- def add_bert_prefix(key):
114
- # prepend bert. to the key
115
- if key.startswith("bert.") or key.startswith("cls."):
116
- return key
117
- return f"bert.{key}"
118
-
119
- state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
120
-
121
- # LayerNorm
122
- def key_mapping_ln_gamma_beta(key):
123
- key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
124
- key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
125
- return key
126
-
127
- state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
128
-
129
- # Layers
130
- def key_mapping_layers(key):
131
- return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
132
-
133
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
134
-
135
- # LayerNorm
136
- def key_mapping_ln(key):
137
- key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
138
- key = re.sub(
139
- r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
140
- r"bert.encoder.layers.\1.norm1.\2",
141
- key,
142
- )
143
- key = re.sub(
144
- r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
145
- r"bert.encoder.layers.\1.norm2.\2",
146
- key,
147
- )
148
- key = re.sub(
149
- r"^cls.predictions.transform.LayerNorm.(weight|bias)",
150
- r"cls.predictions.transform.layer_norm.\1",
151
- key,
152
- )
153
- return key
154
-
155
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
156
-
157
- # MLP
158
- def key_mapping_mlp(key):
159
- key = re.sub(
160
- r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
161
- r"bert.encoder.layers.\1.mlp.fc1.\2",
162
- key,
163
- )
164
- key = re.sub(
165
- r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
166
- r"bert.encoder.layers.\1.mlp.fc2.\2",
167
- key,
168
- )
169
- return key
170
-
171
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
172
-
173
- # Attention
174
- last_layer_subset = getattr(config, "last_layer_subset", False)
175
- for d in range(config.num_hidden_layers):
176
- if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
177
- continue
178
- Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
179
- Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
180
- Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
181
- bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
182
- bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
183
- bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
184
- if not (last_layer_subset and d == config.num_hidden_layers - 1):
185
- state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
186
- state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
187
- else:
188
- state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
189
- state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
190
- state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
191
- state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
192
-
193
- def key_mapping_attn(key):
194
- return re.sub(
195
- r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
196
- r"bert.encoder.layers.\1.attn.out_proj.\2",
197
- key,
198
- )
199
-
200
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
201
-
202
- def key_mapping_decoder_bias(key):
203
- return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
204
-
205
- # remove nsp weights, we don't use
206
- state_dict.pop("cls.seq_relationship.weight", None)
207
- state_dict.pop("cls.seq_relationship.bias", None)
208
- state_dict.pop("bert.embeddings.position_ids", None)
209
-
210
- state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
211
-
212
- if remove_cls_weights:
213
- cls_weights = [
214
- "cls.predictions.decoder.bias",
215
- "cls.predictions.transform.dense.weight",
216
- "cls.predictions.transform.dense.bias",
217
- "cls.predictions.transform.layer_norm.weight",
218
- "cls.predictions.transform.layer_norm.bias",
219
- "cls.predictions.decoder.weight",
220
- ]
221
- for weight in cls_weights:
222
- state_dict.pop(weight, None)
223
-
224
- # Word embedding
225
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
226
- if pad_vocab_size_multiple > 1:
227
- word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
228
- state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
229
- word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
230
- )
231
- if not remove_cls_weights:
232
- decoder_weight = state_dict["cls.predictions.decoder.weight"]
233
- state_dict["cls.predictions.decoder.weight"] = F.pad(
234
- decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
235
- )
236
- # If the vocab was padded, we want to set the decoder bias for those padded indices to be
237
- # strongly negative (i.e. the decoder shouldn't predict those indices).
238
- # TD [2022-05-09]: I don't think it affects the MLPerf training.
239
- if "cls.predictions.decoder.bias" in state_dict:
240
- decoder_bias = state_dict["cls.predictions.decoder.bias"]
241
- state_dict["cls.predictions.decoder.bias"] = F.pad(
242
- decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
243
- )
244
-
245
- if add_pooling_layer is False:
246
- pooler_weights = [
247
- "bert.pooler.dense.weight",
248
- "bert.pooler.dense.bias",
249
- ]
250
- for key in pooler_weights:
251
- state_dict.pop(key, None)
252
-
253
- if remove_bert:
254
-
255
- def remove_bert_prefix(key):
256
- key = re.sub(r"^bert.", "", key)
257
- return key
258
-
259
- state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
260
-
261
- return state_dict
262
-
263
-
264
- class NomicBertPreTrainedModel(PreTrainedModel):
265
- """An abstract class to handle weights initialization and
266
- a simple interface for dowloading and loading pretrained models.
267
- """
268
-
269
- config_class = NomicBertConfig
270
- base_model_prefix = "model"
271
- supports_gradient_checkpointing = True
272
- _no_split_modules = ["Block"]
273
- _skip_keys_device_placement = "past_key_values"
274
-
275
- def __init__(self, config, *inputs, **kwargs):
276
- super().__init__(config)
277
- if not isinstance(config, GPT2Config):
278
- raise ValueError(
279
- "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
280
- "To create a model from a Google pretrained model use "
281
- "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
282
- self.__class__.__name__, self.__class__.__name__
283
- )
284
- )
285
- self.config = config
286
-
287
- @classmethod
288
- def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
289
- """
290
- Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
291
- Download and cache the pre-trained model file if needed.
292
-
293
- Params:
294
- pretrained_model_name_or_path: either:
295
- - a path or url to a pretrained model archive containing:
296
- . `bert_config.json` a configuration file for the model
297
- . `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
298
- - a path or url to a pretrained model archive containing:
299
- . `bert_config.json` a configuration file for the model
300
- . `model.chkpt` a TensorFlow checkpoint
301
- *inputs, **kwargs: additional input for the specific NomicBert class
302
- (ex: num_labels for NomicBertForSequenceClassification)
303
- """
304
- # Instantiate model.
305
- if config is None:
306
- config = cls.config_class.from_pretrained(model_name)
307
- remove_cls = cls != NomicBertForPreTraining
308
- remove_bert_prefix = cls != NomicBertForPreTraining
309
- ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
310
- num_labels = kwargs.pop("num_labels", None)
311
- rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
312
- if rotary_scaling_factor:
313
- config.rotary_scaling_factor = rotary_scaling_factor
314
-
315
- if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
316
- config.n_positions = 2048
317
- if num_labels:
318
- config.num_labels = num_labels
319
-
320
- if "add_pooling_layer" in kwargs:
321
- model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
322
- else:
323
- if cls == NomicBertModel:
324
- model = cls(config, *inputs, add_pooling_layer=False)
325
- else:
326
- model = cls(config, *inputs)
327
- # TODO: fix this
328
- # Assuming we know what we're doing when loading from disk
329
- # Prob a bad assumption but i'm tired and want to train this asap
330
- if os.path.exists(model_name):
331
- model_path = f"{model_name}/pytorch_model.bin"
332
- if os.path.exists(model_path):
333
- state_dict = torch.load(f"{model_name}/pytorch_model.bin")
334
- else:
335
- model_path = f"{model_name}/model.safetensors"
336
- if not os.path.exists(model_path):
337
- raise ValueError(f"Model path {model_path} not found")
338
- state_dict = safe_load_file(model_path)
339
-
340
- if ignore_mismatched_shapes:
341
- state_dict = filter_shapes(state_dict, model)
342
- load_return = model.load_state_dict(state_dict, strict=False)
343
- else:
344
- # TODO: can probably check config class and see if we need to remap from a bert model
345
- state_dict = state_dict_from_pretrained(model_name, safe_serialization=kwargs.get("safe_serialization", False))
346
- state_dict = remap_bert_state_dict(
347
- state_dict,
348
- config,
349
- remove_bert=remove_bert_prefix,
350
- remove_cls_weights=remove_cls,
351
- add_pooling_layer=getattr(config, "add_pooling_layer", False),
352
- )
353
- if ignore_mismatched_shapes:
354
- state_dict = filter_shapes(state_dict, model)
355
-
356
- load_return = model.load_state_dict(state_dict, strict=True)
357
- logger.warning(load_return)
358
- return model
359
-
360
- def _set_gradient_checkpointing(self, module, value=False):
361
- if isinstance(module, NomicBertEncoder):
362
- module.gradient_checkpointing = value
363
-
364
-
365
- # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
366
- def _init_weights(module, initializer_range=0.02):
367
- if isinstance(module, nn.Linear):
368
- nn.init.normal_(module.weight, std=initializer_range)
369
- if module.bias is not None:
370
- nn.init.zeros_(module.bias)
371
- elif isinstance(module, nn.Embedding):
372
- nn.init.normal_(module.weight, std=initializer_range)
373
- if module.padding_idx is not None:
374
- nn.init.zeros_(module.weight[module.padding_idx])
375
-
376
-
377
- class NomicBertEmbeddings(nn.Module):
378
- def __init__(self, config):
379
- """
380
- If max_position_embeddings <= 0, there's no position embeddings
381
- If type_vocab_size <= 0, there's no token type embeddings
382
- """
383
- super().__init__()
384
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
385
- self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
386
- self.type_vocab_size = config.type_vocab_size
387
- if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
388
- self.position_embeddings = nn.Embedding(
389
- config.max_position_embeddings,
390
- config.hidden_size,
391
- )
392
- if self.type_vocab_size > 0:
393
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
394
-
395
- def forward(self, input_ids, position_ids=None, token_type_ids=None):
396
- """
397
- input_ids: (batch, seqlen)
398
- position_ids: (batch, seqlen)
399
- token_type_ids: (batch, seqlen)
400
- """
401
- batch_size, seqlen = input_ids.shape
402
- embeddings = self.word_embeddings(input_ids)
403
-
404
- if self.type_vocab_size > 0:
405
- if token_type_ids is None:
406
- token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
407
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
408
- embeddings = embeddings + token_type_embeddings
409
-
410
- if self.max_position_embeddings > 0:
411
- if position_ids is None:
412
- position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
413
- position_embeddings = self.position_embeddings(position_ids)
414
- embeddings = embeddings + position_embeddings
415
- return embeddings
416
-
417
-
418
- class NomicBertMLP(nn.Module):
419
- def __init__(
420
- self,
421
- in_features,
422
- hidden_features=None,
423
- out_features=None,
424
- activation=F.gelu,
425
- bias1=True,
426
- bias2=True,
427
- return_residual=False,
428
- fused_bias_fc=False,
429
- ):
430
- super().__init__()
431
- out_features = out_features if out_features is not None else in_features
432
- hidden_features = hidden_features if hidden_features is not None else in_features * 4
433
- self.return_residual = return_residual
434
- self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
435
- approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
436
- self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
437
- self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
438
-
439
- def forward(self, x):
440
- y = self.fc1(x)
441
- y = self.activation(y)
442
- y = self.fc2(y)
443
- return y if not self.return_residual else (y, x)
444
-
445
-
446
- class NomciBertGatedMLP(nn.Module):
447
- def __init__(
448
- self,
449
- in_features,
450
- hidden_features=None,
451
- out_features=None,
452
- activation=F.sigmoid,
453
- bias1=True,
454
- bias2=True,
455
- multiple_of=256,
456
- return_residual=False,
457
- fused_bias_fc=True,
458
- device=None,
459
- dtype=None,
460
- ):
461
- super().__init__()
462
- out_features = out_features if out_features is not None else in_features
463
- hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
464
- hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
465
- self.return_residual = return_residual
466
-
467
- self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
468
- self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
469
- self.activation = activation
470
- self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
471
-
472
- def forward(self, x):
473
- y = self.fc11(x)
474
- gate = self.fc12(x)
475
- if self.activation == F.sigmoid: # Special case for GLU
476
- y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
477
- else:
478
- y = y * self.activation(gate)
479
- y = self.fc2(y)
480
- return y if not self.return_residual else (y, x)
481
-
482
-
483
- def rotate_half(x, interleaved=False):
484
- if not interleaved:
485
- x1, x2 = x.chunk(2, dim=-1)
486
- return torch.cat((-x2, x1), dim=-1)
487
- else:
488
- x1, x2 = x[..., ::2], x[..., 1::2]
489
- return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
490
-
491
-
492
- def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
493
- """
494
- x: (batch_size, seqlen, nheads, headdim)
495
- cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
496
- """
497
- ro_dim = cos.shape[-1] * 2
498
- assert ro_dim <= x.shape[-1]
499
- cos, sin = (
500
- cos[offset : offset + x.shape[1]],
501
- sin[offset : offset + x.shape[1]],
502
- )
503
- cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
504
- sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
505
- return torch.cat(
506
- [x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
507
- dim=-1,
508
- )
509
-
510
-
511
- class NomicBertRotaryEmbedding(nn.Module):
512
- def __init__(
513
- self,
514
- dim: int,
515
- base=10000.0,
516
- interleaved=False,
517
- scale_base=None,
518
- pos_idx_in_fp32=True,
519
- device=None,
520
- ):
521
- """
522
- interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
523
- of 1st half and 2nd half (GPT-NeoX style).
524
- pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
525
- otherwise they might be in lower precision.
526
- This option was added because previously (before 2023-07-02), when we construct
527
- the position indices, we use the dtype of self.inv_freq. In most cases this would
528
- be fp32, but if the model is trained in pure bf16 (not mixed precision), then
529
- self.inv_freq would be bf16, and the position indices are also in bf16.
530
- Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
531
- embeddings for some positions will coincide.
532
- To maintain compatibility with models previously trained in pure bf16,
533
- we add this option.
534
- """
535
- super().__init__()
536
- self.dim = dim
537
- self.base = float(base)
538
- self.pos_idx_in_fp32 = pos_idx_in_fp32
539
- # Generate and save the inverse frequency buffer (non trainable)
540
- inv_freq = self._compute_inv_freq(device)
541
- self.register_buffer("inv_freq", inv_freq, persistent=False)
542
- self.interleaved = interleaved
543
- self.scale_base = scale_base
544
- scale = (
545
- (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
546
- if scale_base is not None
547
- else None
548
- )
549
- self.register_buffer("scale", scale, persistent=False)
550
-
551
- self._seq_len_cached = 0
552
- self._cos_cached = None
553
- self._sin_cached = None
554
- self._cos_k_cached = None
555
- self._sin_k_cached = None
556
-
557
- def _compute_inv_freq(self, device=None):
558
- return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
559
-
560
- def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
561
- # Reset the tables if the sequence length has changed,
562
- # if we're on a new device (possibly due to tracing for instance),
563
- # or if we're switching from inference mode to training
564
- if (
565
- seqlen > self._seq_len_cached
566
- or self._cos_cached is None
567
- or self._cos_cached.device != device
568
- or self._cos_cached.dtype != dtype
569
- or (self.training and self._cos_cached.is_inference())
570
- ):
571
- self._seq_len_cached = seqlen
572
- # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
573
- # And the output of arange can be quite large, so bf16 would lose a lot of precision.
574
- # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
575
- if self.pos_idx_in_fp32:
576
- t = torch.arange(seqlen, device=device, dtype=torch.float32)
577
- # We want fp32 here as well since inv_freq will be multiplied with t, and the output
578
- # will be large. Having it in bf16 will lose a lot of precision and cause the
579
- # cos & sin output to change significantly.
580
- # We want to recompute self.inv_freq if it was not loaded in fp32
581
- if self.inv_freq.dtype != torch.float32:
582
- inv_freq = self._compute_inv_freq(device=device)
583
- else:
584
- inv_freq = self.inv_freq
585
- else:
586
- t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
587
- inv_freq = self.inv_freq
588
- # Don't do einsum, it converts fp32 to fp16 under AMP
589
- # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
590
- freqs = torch.outer(t, inv_freq)
591
- self._cos_cached = torch.cos(freqs).to(dtype)
592
- self._sin_cached = torch.sin(freqs).to(dtype)
593
-
594
- def forward(
595
- self,
596
- qkv: torch.Tensor,
597
- kv: Optional[torch.Tensor] = None,
598
- seqlen_offset: Union[int, torch.Tensor] = 0,
599
- max_seqlen: Optional[int] = None,
600
- ) -> Tuple[torch.Tensor, torch.Tensor]:
601
- """
602
- qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
603
- else it's just q of shape (batch, seqlen, nheads, headdim)
604
- kv: (batch, seqlen, 2, nheads, headdim)
605
- seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
606
- Most commonly used in inference when we have KV cache.
607
- If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
608
- should pass in max_seqlen, which will update the cos / sin cache up to that length.
609
- Apply rotary embedding *inplace* to qkv and / or kv.
610
- """
611
- seqlen = qkv.shape[1]
612
- if seqlen > self._seq_len_cached:
613
- self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
614
- elif max_seqlen is not None:
615
- self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
616
- elif isinstance(seqlen_offset, int):
617
- self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
618
-
619
- q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
620
- k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
621
- return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
622
-
623
-
624
- class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
625
- def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
626
- super().__init__(**kwargs)
627
- self.rotary_scaling_factor = rotary_scaling_factor
628
- self.max_position_embeddings = max_position_embeddings
629
-
630
- def _compute_inv_freq(self, base=None, device=None):
631
- if base is None:
632
- base = self.base
633
- return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
634
-
635
- def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
636
- # Reset the tables if the sequence length has changed,
637
- # if we're on a new device (possibly due to tracing for instance),
638
- # or if we're switching from inference mode to training
639
- if seqlen > self.max_position_embeddings:
640
- base = self.base * (
641
- (self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
642
- ) ** (self.dim / (self.dim - 2))
643
- inv_freq = self._compute_inv_freq(base=base, device=device)
644
- self.register_buffer("inv_freq", inv_freq, persistent=False)
645
-
646
- if (
647
- seqlen > self._seq_len_cached
648
- or self._cos_cached is None
649
- or self._cos_cached.device != device
650
- or self._cos_cached.dtype != dtype
651
- or (self.training and self._cos_cached.is_inference())
652
- ):
653
- self._seq_len_cached = seqlen
654
- # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
655
- # And the output of arange can be quite large, so bf16 would lose a lot of precision.
656
- # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
657
- if self.pos_idx_in_fp32:
658
- t = torch.arange(seqlen, device=device, dtype=torch.float32)
659
- # We want fp32 here as well since inv_freq will be multiplied with t, and the output
660
- # will be large. Having it in bf16 will lose a lot of precision and cause the
661
- # cos & sin output to change significantly.
662
- # We want to recompute self.inv_freq if it was not loaded in fp32
663
- if self.inv_freq.dtype != torch.float32:
664
- if seqlen > self.max_position_embeddings:
665
- base = self.base * (
666
- (self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
667
- ) ** (self.dim / (self.dim - 2))
668
- else:
669
- base = self.base
670
- inv_freq = self._compute_inv_freq(device=device, base=base)
671
- else:
672
- inv_freq = self.inv_freq
673
- else:
674
- t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
675
- inv_freq = self.inv_freq
676
- # Don't do einsum, it converts fp32 to fp16 under AMP
677
- # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
678
- freqs = torch.outer(t, inv_freq)
679
- if self.scale is None:
680
- self._cos_cached = torch.cos(freqs).to(dtype)
681
- self._sin_cached = torch.sin(freqs).to(dtype)
682
- else:
683
- power = (
684
- torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
685
- ) / self.scale_base
686
- scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
687
- # We want the multiplication by scale to happen in fp32
688
- self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
689
- self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
690
- self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
691
- self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
692
-
693
-
694
- class NomicBertAttention(nn.Module):
695
- """Multi-head self-attention and cross-attention"""
696
-
697
- def __init__(
698
- self,
699
- config,
700
- ) -> None:
701
- """
702
- num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
703
- return_residual: whether to return the input x along with the output. This is for
704
- performance reason: for post-norm architecture, returning the input allows us
705
- to fuse the backward of nn.Linear with the residual connection.
706
- """
707
- super().__init__()
708
- self.embed_dim = config.n_embd
709
- self.use_flash_attn = config.use_flash_attn
710
- self.fused_bias_fc = config.fused_bias_fc
711
-
712
- self.num_heads = config.n_head
713
- self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
714
- assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
715
- self.head_dim = self.embed_dim // self.num_heads
716
- # we don't really support mqa / gqa for now
717
- qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
718
-
719
- self.register_buffer(
720
- "norm_factor",
721
- torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
722
- persistent=False,
723
- )
724
-
725
- self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
726
- if self.rotary_emb_dim > 0:
727
- if config.rotary_scaling_factor:
728
- self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
729
- dim=self.rotary_emb_dim,
730
- base=config.rotary_emb_base,
731
- scale_base=config.rotary_emb_scale_base,
732
- interleaved=config.rotary_emb_interleaved,
733
- rotary_scaling_factor=config.rotary_scaling_factor,
734
- max_position_embeddings=config.max_trained_positions,
735
- )
736
- else:
737
- self.rotary_emb = NomicBertRotaryEmbedding(
738
- dim=self.rotary_emb_dim,
739
- base=config.rotary_emb_base,
740
- scale_base=config.rotary_emb_scale_base,
741
- interleaved=config.rotary_emb_interleaved,
742
- )
743
- # bug in xformers: https://github.com/facebookresearch/xformers/issues/841
744
- # uses the head dimension instead of the sequence dimension
745
- self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
746
-
747
- self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
748
-
749
- self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
750
- self.causal = config.causal
751
- self.drop = nn.Dropout(config.attn_pdrop)
752
-
753
- def forward(
754
- self,
755
- hidden_states: torch.Tensor,
756
- attention_mask: Optional[torch.Tensor] = None,
757
- position_ids: Optional[torch.LongTensor] = None,
758
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
759
- output_attentions: bool = False,
760
- use_cache: bool = False,
761
- is_padded_inputs: Optional[bool] = True,
762
- cu_seqlens: Optional[torch.Tensor] = None,
763
- max_seq_len: Optional[int] = None,
764
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
765
-
766
- has_layer_past = past_key_value is not None
767
-
768
- if has_layer_past:
769
- past_key_value = past_key_value[0]
770
- past_len = past_key_value[1]
771
- else:
772
- past_len = 0
773
-
774
- qkv = self.Wqkv(hidden_states)
775
- qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
776
-
777
- past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
778
-
779
- if self.rotary_emb_dim > 0:
780
- if self.rotary_head_dim:
781
- qkv = rearrange(qkv, "b s three h d -> b h three s d")
782
- qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
783
-
784
- if self.rotary_head_dim:
785
- qkv = rearrange(qkv, "b h three s d -> b s three h d")
786
-
787
- query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
788
-
789
- query = query.permute(0, 2, 1, 3)
790
- key = key.permute(0, 2, 1, 3)
791
- value = value.permute(0, 2, 1, 3)
792
-
793
- attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
794
- if attention_mask is not None:
795
- attention_scores = attention_scores + attention_mask
796
-
797
- attentions_probs = F.softmax(attention_scores, dim=-1)
798
- attentions_probs = self.drop(attentions_probs)
799
-
800
- attn_output = torch.matmul(attentions_probs, value)
801
- attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
802
-
803
- attn_output = self.out_proj(attn_output)
804
-
805
- return attn_output
806
-
807
-
808
- class NomicBertBlock(NomicBertPreTrainedModel):
809
- def __init__(
810
- self,
811
- config,
812
- ):
813
- super().__init__(config=config)
814
- self.prenorm = config.prenorm
815
- self.fused_dropout_add_ln = config.fused_dropout_add_ln
816
-
817
- self.attn = NomicBertAttention(config)
818
- activation = (
819
- F.sigmoid
820
- if config.activation_function == "glu"
821
- else (F.silu if config.activation_function == "swiglu" else F.gelu)
822
- )
823
- if config.activation_function in ["glu", "swiglu", "geglu"]:
824
- self.mlp = NomciBertGatedMLP(
825
- config.n_embd,
826
- hidden_features=config.n_inner,
827
- bias1=config.mlp_fc1_bias,
828
- bias2=config.mlp_fc2_bias,
829
- activation=activation,
830
- fused_bias_fc=config.fused_bias_fc,
831
- )
832
- else:
833
- self.mlp = NomicBertMLP(
834
- config.n_embd,
835
- hidden_features=config.n_inner,
836
- bias1=config.mlp_fc1_bias,
837
- bias2=config.mlp_fc2_bias,
838
- activation=activation,
839
- fused_bias_fc=config.fused_bias_fc,
840
- )
841
-
842
- self.dropout1 = nn.Dropout(config.resid_pdrop)
843
- self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
844
- self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
845
- self.dropout2 = nn.Dropout(config.resid_pdrop)
846
-
847
- def forward(
848
- self,
849
- hidden_states: torch.Tensor,
850
- hidden_states2: torch.Tensor,
851
- residual: Optional[torch.Tensor] = None,
852
- attention_mask: Optional[torch.Tensor] = None,
853
- position_ids: Optional[torch.LongTensor] = None,
854
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
855
- is_padded_inputs: Optional[bool] = True,
856
- output_attentions: Optional[bool] = False,
857
- use_cache: Optional[bool] = False,
858
- cu_seqlens: Optional[torch.Tensor] = None,
859
- max_seq_len: Optional[int] = None,
860
- ):
861
- r"""Pass the input through the encoder layer.
862
-
863
- Args:
864
- hidden_states: the sequence to the encoder layer (required).
865
- residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
866
- mixer_subset: for cross-attention only. If not None, will take a subset of x
867
- before applying the query projection. Useful for e.g., ViT where we only care
868
- about the CLS token in the last layer.
869
- """
870
- if self.prenorm:
871
- dropped = self.dropout1(hidden_states)
872
- residual = (dropped + residual) if residual is not None else dropped
873
- hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
874
- hidden_states = self.attn(
875
- hidden_states,
876
- attention_mask=attention_mask,
877
- is_padded_inputs=is_padded_inputs,
878
- cu_seqlens=cu_seqlens,
879
- max_seq_len=max_seq_len,
880
- )
881
-
882
- dropped = self.dropout2(hidden_states)
883
- residual = (dropped + residual) if residual is not None else dropped
884
- hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
885
- hidden_states = self.mlp(hidden_states)
886
-
887
- return hidden_states, None, residual
888
- else:
889
- assert residual is None
890
- attn_outputs = self.attn(
891
- hidden_states,
892
- attention_mask=attention_mask,
893
- is_padded_inputs=is_padded_inputs,
894
- cu_seqlens=cu_seqlens,
895
- max_seq_len=max_seq_len,
896
- )
897
- hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
898
- mlp_out = self.mlp(hidden_states)
899
-
900
- hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
901
- return hidden_states, None, None
902
-
903
-
904
- class NomicBertEncoder(nn.Module):
905
- def __init__(self, config: GPT2Config):
906
- super().__init__()
907
- self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
908
- self.gradient_checkpointing = False
909
- self.config = config
910
-
911
- def forward(
912
- self,
913
- hidden_states: torch.LongTensor = None,
914
- attention_mask: Optional[torch.Tensor] = None,
915
- position_ids: Optional[torch.LongTensor] = None,
916
- past_key_values: Optional[List[torch.FloatTensor]] = None,
917
- inputs_embeds: Optional[torch.FloatTensor] = None,
918
- use_cache: Optional[bool] = None,
919
- output_attentions: Optional[bool] = None,
920
- output_hidden_states: Optional[bool] = None,
921
- return_dict: Optional[bool] = None,
922
- is_padded_inputs: Optional[bool] = True,
923
- ):
924
- """If subset_mask is not None, we only want output for the subset of the sequence.
925
- This means that we only compute the last layer output for these tokens.
926
- subset_mask: (batch, seqlen), dtype=torch.bool
927
- """
928
- hidden_states2 = None
929
- residual = None
930
-
931
- for _, layer in enumerate(self.layers):
932
- if self.gradient_checkpointing and self.training:
933
-
934
- def create_custom_forward(module):
935
- def custom_forward(*inputs):
936
- # None for past_key_value
937
- return module(*inputs)
938
-
939
- return custom_forward
940
-
941
- hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
942
- create_custom_forward(layer),
943
- hidden_states,
944
- hidden_states2,
945
- residual,
946
- attention_mask,
947
- None,
948
- None,
949
- is_padded_inputs,
950
- # if you freeze ANY layers, you need `use_reentrant=False`
951
- # https://github.com/huggingface/transformers/issues/21381
952
- # https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
953
- use_reentrant=False,
954
- )
955
-
956
- else:
957
- hidden_states, hidden_states2, residual = layer(
958
- hidden_states,
959
- hidden_states2,
960
- residual,
961
- attention_mask,
962
- position_ids,
963
- None,
964
- is_padded_inputs,
965
- output_attentions,
966
- use_cache,
967
- )
968
- return hidden_states
969
-
970
-
971
- class NomicBertPooler(nn.Module):
972
- def __init__(self, config):
973
- super().__init__()
974
- self.dense = nn.Linear(config.n_embd, config.n_embd)
975
- self.activation = nn.Tanh()
976
-
977
- def forward(self, hidden_states, pool=True):
978
- # We "pool" the model by simply taking the hidden state corresponding
979
- # to the first token.
980
- first_token_tensor = hidden_states[:, 0] if pool else hidden_states
981
- pooled_output = self.dense(first_token_tensor)
982
- pooled_output = self.activation(pooled_output)
983
- return pooled_output
984
-
985
-
986
- class NomicBertPredictionHeadTransform(nn.Module):
987
- def __init__(self, config):
988
- super().__init__()
989
- self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
990
- approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
991
- if config.activation_function == "swiglu":
992
- self.transform_act_fn = F.silu
993
- else:
994
- self.transform_act_fn = nn.GELU(approximate=approximate)
995
-
996
- self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
997
-
998
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
999
- hidden_states = self.dense(hidden_states)
1000
- hidden_states = self.transform_act_fn(hidden_states)
1001
- hidden_states = self.layer_norm(hidden_states)
1002
-
1003
- return hidden_states
1004
-
1005
-
1006
- class NomicBertLMPredictionHead(nn.Module):
1007
- def __init__(self, config):
1008
- super().__init__()
1009
-
1010
- self.transform = NomicBertPredictionHeadTransform(config)
1011
-
1012
- self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
1013
-
1014
- def forward(self, hidden_states):
1015
- hidden_states = self.transform(hidden_states)
1016
- hidden_states = self.decoder(hidden_states)
1017
- return hidden_states
1018
-
1019
-
1020
- class NomicBertPreTrainingHeads(nn.Module):
1021
- def __init__(self, config):
1022
- super().__init__()
1023
- self.predictions = NomicBertLMPredictionHead(config)
1024
-
1025
- def forward(self, sequence_output):
1026
- prediction_scores = self.predictions(sequence_output)
1027
- return prediction_scores
1028
-
1029
-
1030
- class NomicBertModel(NomicBertPreTrainedModel):
1031
- def __init__(self, config: GPT2Config, add_pooling_layer=True):
1032
- super().__init__(config)
1033
- self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
1034
- if config.vocab_size % self.pad_vocab_size_multiple != 0:
1035
- config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
1036
-
1037
- assert config.activation_function in [
1038
- "gelu",
1039
- "gelu_new",
1040
- "gelu_fast",
1041
- "gelu_pytorch_tanh",
1042
- "swiglu",
1043
- "geglu",
1044
- "glu",
1045
- ]
1046
-
1047
- self.embeddings = NomicBertEmbeddings(config)
1048
- self.emb_drop = nn.Dropout(config.resid_pdrop)
1049
- self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
1050
- self.encoder = NomicBertEncoder(config)
1051
- self.pooler = NomicBertPooler(config) if add_pooling_layer else None
1052
-
1053
- self.apply(partial(_init_weights, initializer_range=config.initializer_range))
1054
-
1055
- def forward(
1056
- self,
1057
- input_ids,
1058
- position_ids=None,
1059
- token_type_ids=None,
1060
- attention_mask=None,
1061
- return_dict=None,
1062
- ):
1063
- if token_type_ids is None:
1064
- token_type_ids = torch.zeros_like(input_ids)
1065
- hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
1066
- hidden_states = self.emb_ln(hidden_states)
1067
- hidden_states = self.emb_drop(hidden_states)
1068
-
1069
- attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
1070
- sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
1071
-
1072
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1073
-
1074
- return BaseModelOutputWithPoolingAndCrossAttentions(
1075
- last_hidden_state=sequence_output,
1076
- pooler_output=pooled_output,
1077
- )
1078
-
1079
-
1080
- class NomicBertForPreTraining(NomicBertPreTrainedModel):
1081
- _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1082
-
1083
- def __init__(self, config: GPT2Config):
1084
- super().__init__(config)
1085
-
1086
- self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
1087
- self.cls = NomicBertPreTrainingHeads(config)
1088
- self.mlm_loss = nn.CrossEntropyLoss()
1089
-
1090
- # Initialize weights and apply final processing
1091
- self.apply(partial(_init_weights, initializer_range=config.initializer_range))
1092
- self.tie_weights()
1093
-
1094
- def tie_weights(self):
1095
- self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
1096
-
1097
- def forward(
1098
- self,
1099
- input_ids,
1100
- position_ids=None,
1101
- token_type_ids=None,
1102
- attention_mask=None,
1103
- labels=None,
1104
- ):
1105
- """
1106
- If labels are provided, they must be -100 for masked out tokens (as specified in the attention
1107
- mask).
1108
- Outputs:
1109
- if `labels` and `next_sentence_label` are not `None`:
1110
- Outputs the total_loss which is the sum of the masked language modeling loss and the next
1111
- sentence classification loss.
1112
- if `labels` or `next_sentence_label` is `None`:
1113
- Outputs a tuple comprising
1114
- - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
1115
- - the next sentence classification logits of shape [batch_size, 2].
1116
-
1117
- """
1118
- outputs = self.bert(
1119
- input_ids,
1120
- position_ids=position_ids,
1121
- token_type_ids=token_type_ids,
1122
- attention_mask=attention_mask.bool() if attention_mask is not None else None,
1123
- )
1124
- sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
1125
-
1126
- prediction_scores = self.cls(sequence_output)
1127
-
1128
- total_loss = None
1129
- if labels is not None:
1130
- masked_lm_loss = self.mlm_loss(
1131
- rearrange(prediction_scores, "... v -> (...) v"),
1132
- rearrange(labels, "... -> (...)"),
1133
- )
1134
- total_loss = masked_lm_loss.float()
1135
-
1136
- return MaskedLMOutput(
1137
- loss=total_loss,
1138
- logits=prediction_scores,
1139
- hidden_states=outputs.hidden_states,
1140
- attentions=None,
1141
- )
1142
-
1143
-
1144
- class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
1145
- def __init__(self, config):
1146
- super().__init__(config)
1147
- self.num_labels = config.num_labels
1148
- self.config = config
1149
-
1150
- self.bert = NomicBertModel(config)
1151
- classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
1152
- self.dropout = nn.Dropout(classifier_dropout)
1153
- self.classifier = nn.Linear(config.n_embd, config.num_labels)
1154
-
1155
- # Initialize weights and apply final processing
1156
- self.post_init()
1157
-
1158
- def forward(
1159
- self,
1160
- input_ids: Optional[torch.Tensor] = None,
1161
- attention_mask: Optional[torch.Tensor] = None,
1162
- token_type_ids: Optional[torch.Tensor] = None,
1163
- position_ids: Optional[torch.Tensor] = None,
1164
- head_mask: Optional[torch.Tensor] = None,
1165
- inputs_embeds: Optional[torch.Tensor] = None,
1166
- labels: Optional[torch.Tensor] = None,
1167
- output_attentions: Optional[bool] = None,
1168
- output_hidden_states: Optional[bool] = None,
1169
- return_dict: Optional[bool] = None,
1170
- ):
1171
- r"""
1172
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1173
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1174
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1175
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1176
- """
1177
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1178
- outputs = self.bert(
1179
- input_ids,
1180
- position_ids=position_ids,
1181
- token_type_ids=token_type_ids,
1182
- attention_mask=attention_mask.bool() if attention_mask is not None else None,
1183
- )
1184
-
1185
- pooled_output = outputs[1]
1186
-
1187
- pooled_output = self.dropout(pooled_output)
1188
- logits = self.classifier(pooled_output)
1189
-
1190
- loss = None
1191
- if labels is not None:
1192
- if self.config.problem_type is None:
1193
- if self.num_labels == 1:
1194
- self.config.problem_type = "regression"
1195
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1196
- self.config.problem_type = "single_label_classification"
1197
- else:
1198
- self.config.problem_type = "multi_label_classification"
1199
-
1200
- if self.config.problem_type == "regression":
1201
- loss_fct = nn.MSELoss()
1202
- if self.num_labels == 1:
1203
- loss = loss_fct(logits.squeeze(), labels.squeeze())
1204
- else:
1205
- loss = loss_fct(logits, labels)
1206
- elif self.config.problem_type == "single_label_classification":
1207
- loss_fct = nn.CrossEntropyLoss()
1208
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1209
- elif self.config.problem_type == "multi_label_classification":
1210
- loss_fct = nn.BCEWithLogitsLoss()
1211
- loss = loss_fct(logits, labels)
1212
- if not return_dict:
1213
- output = (logits,) + outputs[2:]
1214
- return ((loss,) + output) if loss is not None else output
1215
-
1216
- return SequenceClassifierOutput(
1217
- loss=loss,
1218
- logits=logits,
1219
- hidden_states=outputs.hidden_states,
1220
- attentions=outputs.attentions,
1221
- )