nondevs commited on
Commit
0efc708
·
1 Parent(s): 6390542

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 286.95 +/- 19.31
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 295.52 +/- 15.60
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8aa08660e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8aa0866170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8aa0866200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8aa0866290>", "_build": "<function ActorCriticPolicy._build at 0x7f8aa0866320>", "forward": "<function ActorCriticPolicy.forward at 0x7f8aa08663b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8aa0866440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8aa08664d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8aa0866560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8aa08665f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8aa0866680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8aa08b8210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651745167.2732997, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo+i73DwTS6y/50uvBzkLU9vQy6gtKQOQAAAAAAAIA/MyoQvXv2grqKuVK3kZowslrCk7qe1XU2AACAPwAAgD8zJpK8H2aXu17Ftzxca0899TbTPGBsjLsAAIA/AACAP4AYgD1x7WS5Y5ENNPUq267RhDw6pfq9swAAgD8AAIA/mqXiO0h/lbrSgwM20TfIMGbT37qBdB+1AACAPwAAgD+aYQs71t2UPmdtQr1O0oa+jiogvf39FTwAAAAAAAAAAGY+azvD9Se6Umd2trfj0rHLhYI7fyuVNQAAgD8AAIA/ba5QPhGVrD4r1oW+1Iyjvp/rqjw4vFw9AAAAAAAAAAAzKq88w49vvM1dJzyMSnM8Iu3TPZ2NRr0AAIA/AACAP2YCKrxIuY66f3egNgQHnzGHBAw7b3K5tQAAgD8AAIA/mngyvcNlJ7pICxU5Pt2vNJnUFjtV7Cy4AACAPwAAgD8VB5G+I5ZuP3+gr77fF9K+h5jDvvlepDwAAAAAAAAAAFOgBz7HRgg+xG2dvkm7QL7MOcS9eAivvQAAAAAAAAAAmg6gvdiZ6j79Dds8gpqfvj91a73tSl89AAAAAAAAAAATAAO+adcCvIy+kb1yDRg95uY4Pf61ITwAAIA/AAAAAM1qzT3+vZY/b+e6PiwkB7/csg8+GKL0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxOv6BTsacUCUhpRSlIwBbJRNkAGMAXSUR0CfBBL3K0UodX2UKGgGaAloD0MIeZRKeMLLcUCUhpRSlGgVTQMBaBZHQJ8E7xH5Jsh1fZQoaAZoCWgPQwibcoV3uZhxQJSGlFKUaBVL+WgWR0CfBenEVFhHdX2UKGgGaAloD0MIf95UpIIlc0CUhpRSlGgVS+toFkdAnwYuU6gdwXV9lChoBmgJaA9DCBTtKqS8snFAlIaUUpRoFUv8aBZHQJ8GWukk8ih1fZQoaAZoCWgPQwgJNUOqqFJuQJSGlFKUaBVNDAFoFkdAnwjkxREWqXV9lChoBmgJaA9DCP/KSpOSK3JAlIaUUpRoFU0YAWgWR0CfCTLLIPsidX2UKGgGaAloD0MIUfcBSK0IckCUhpRSlGgVS/NoFkdAnwk7uDzy0HV9lChoBmgJaA9DCPRqgNLQlnJAlIaUUpRoFUvzaBZHQJ8Jg/6frbB1fZQoaAZoCWgPQwicwHRat3xyQJSGlFKUaBVNCAFoFkdAnwnUXcgyM3V9lChoBmgJaA9DCKyOHOlMBnNAlIaUUpRoFU0MAWgWR0CfCgdLg4wRdX2UKGgGaAloD0MIAtU/iGR3cUCUhpRSlGgVS+BoFkdAnwtwH/tICnV9lChoBmgJaA9DCJvJN9tc1XJAlIaUUpRoFUvpaBZHQJ8Lg8q4H5d1fZQoaAZoCWgPQwhbKJmc2ipvQJSGlFKUaBVNCQFoFkdAnwxUgOjIrHV9lChoBmgJaA9DCELr4cuETHFAlIaUUpRoFUv/aBZHQJ8Md3A2ycF1fZQoaAZoCWgPQwhuMxXikZ5uQJSGlFKUaBVNHAFoFkdAnw2z7/GVA3V9lChoBmgJaA9DCJ7vp8aLznBAlIaUUpRoFU08AWgWR0CfDjZ39rGjdX2UKGgGaAloD0MIsOO/QJDPckCUhpRSlGgVS/loFkdAnw6kHdGiH3V9lChoBmgJaA9DCAMmcOvuR21AlIaUUpRoFU0CAWgWR0CfDznM+u/2dX2UKGgGaAloD0MI7N/1mXOcckCUhpRSlGgVTSkBaBZHQJ8PV3LV4HJ1fZQoaAZoCWgPQwik/nqFBYRxQJSGlFKUaBVNIgFoFkdAnxB14xDb8HV9lChoBmgJaA9DCPZBlgUT/29AlIaUUpRoFUvraBZHQJ8SLFqBVdZ1fZQoaAZoCWgPQwi6LZELzmZwQJSGlFKUaBVL/GgWR0CfEi3lCCz1dX2UKGgGaAloD0MIDixHyEDmb0CUhpRSlGgVS/9oFkdAnxJDurp7kXV9lChoBmgJaA9DCNJzC13JH3NAlIaUUpRoFUv8aBZHQJ8SedoWYWt1fZQoaAZoCWgPQwi/SdOgaMxvQJSGlFKUaBVNEAFoFkdAnxKQ0fozN3V9lChoBmgJaA9DCI55HXHIrXJAlIaUUpRoFU0ZAWgWR0CfE9bhm5DrdX2UKGgGaAloD0MIGXEBaFQ8cECUhpRSlGgVS/1oFkdAnxRaCg9Ne3V9lChoBmgJaA9DCJ268lme3XFAlIaUUpRoFU0XAWgWR0CfFTEdNnGsdX2UKGgGaAloD0MI1qvI6MDkcUCUhpRSlGgVTQsBaBZHQJ8VqmIj4Yd1fZQoaAZoCWgPQwgXLNUFvEBMQJSGlFKUaBVLuWgWR0CfFaoBaLXMdX2UKGgGaAloD0MI0m2JXHDjcUCUhpRSlGgVTRkBaBZHQJ8WQL5RCQd1fZQoaAZoCWgPQwhEaW/whcRwQJSGlFKUaBVNEQFoFkdAnxcw2l2vCHV9lChoBmgJaA9DCGniHeCJ8XFAlIaUUpRoFU0eAWgWR0CfGCBnSOR1dX2UKGgGaAloD0MI/1w0ZPysckCUhpRSlGgVTRkBaBZHQJ8YWIwdsBR1fZQoaAZoCWgPQwgO12oPe21uQJSGlFKUaBVNKAFoFkdAnxlxX0XgtXV9lChoBmgJaA9DCM7ixcIQGXFAlIaUUpRoFU0NAWgWR0CfGc7T2FnJdX2UKGgGaAloD0MIkwA1tWwNcECUhpRSlGgVS+hoFkdAnxopW/8EV3V9lChoBmgJaA9DCIkLQKO0PnJAlIaUUpRoFUvxaBZHQJ8akSAYpDx1fZQoaAZoCWgPQwgOvFruDAtxQJSGlFKUaBVL92gWR0CfGwspobn6dX2UKGgGaAloD0MIQ8ajVMIEcUCUhpRSlGgVS/9oFkdAnxy2UfPom3V9lChoBmgJaA9DCPHUIw2uGnJAlIaUUpRoFUv0aBZHQJ8c2oQ4CIV1fZQoaAZoCWgPQwjoMjUJHoRyQJSGlFKUaBVNRwFoFkdAnx1fDpC8e3V9lChoBmgJaA9DCFfqWRCKHHNAlIaUUpRoFUvtaBZHQJ8d0W0qpcZ1fZQoaAZoCWgPQwiRDg9hfIlyQJSGlFKUaBVNUAFoFkdAnx3tDYywfXV9lChoBmgJaA9DCFfNc0Q+PXJAlIaUUpRoFUv8aBZHQJ8eS/Firkt1fZQoaAZoCWgPQwi/1qVGqL9wQJSGlFKUaBVNFgFoFkdAnx61Oj7AL3V9lChoBmgJaA9DCIem7PSDzXFAlIaUUpRoFU0IAWgWR0CfHy/C66J7dX2UKGgGaAloD0MILquwGWA0ckCUhpRSlGgVTQ4BaBZHQJ87eu+yquN1fZQoaAZoCWgPQwgewvhpXCRvQJSGlFKUaBVL/2gWR0CfPSDlHSWrdX2UKGgGaAloD0MI0/iFV5LwcECUhpRSlGgVTSIBaBZHQJ89Rq59Vm11fZQoaAZoCWgPQwiNtiqJLAtxQJSGlFKUaBVNOAFoFkdAnz3YN3GGVXV9lChoBmgJaA9DCI+n5QeuK25AlIaUUpRoFU0lAWgWR0CfP8nezlcRdX2UKGgGaAloD0MILGUZ4hgOcUCUhpRSlGgVTTABaBZHQJ8/yZWq95B1fZQoaAZoCWgPQwijkGRWr6ZyQJSGlFKUaBVL9WgWR0CfQJIYFaB7dX2UKGgGaAloD0MIJCcTt8o+cECUhpRSlGgVS/1oFkdAn0GRIOH313V9lChoBmgJaA9DCJ+sGK4O/k9AlIaUUpRoFUvJaBZHQJ9B3FPznRt1fZQoaAZoCWgPQwireCPzCOpwQJSGlFKUaBVNIwFoFkdAn0JSM98qnXV9lChoBmgJaA9DCEQV/gyvJnFAlIaUUpRoFU1kAWgWR0CfQvK6WgOCdX2UKGgGaAloD0MIayqLwu51cUCUhpRSlGgVTQMBaBZHQJ9DAWP91lp1fZQoaAZoCWgPQwgYXHNHPyVyQJSGlFKUaBVNIwFoFkdAn0PBx1gYxnV9lChoBmgJaA9DCIdSexGtzXBAlIaUUpRoFUvvaBZHQJ9EkQtjCpF1fZQoaAZoCWgPQwi/1qVGaCxuQJSGlFKUaBVNQAFoFkdAn0SuEVWS2nV9lChoBmgJaA9DCCYZOQu77HFAlIaUUpRoFU0mAWgWR0CfRL85jpcHdX2UKGgGaAloD0MIMjogCTtbcUCUhpRSlGgVTQgBaBZHQJ9HEyxiXpp1fZQoaAZoCWgPQwhnKO54k+hyQJSGlFKUaBVNFgFoFkdAn0fNYSxqwnV9lChoBmgJaA9DCNDukGIAC3FAlIaUUpRoFU0hAWgWR0CfSNK02LpBdX2UKGgGaAloD0MIK4nsgywGcECUhpRSlGgVS/VoFkdAn0kGpQ1rI3V9lChoBmgJaA9DCPNZngf33G1AlIaUUpRoFU0CAWgWR0CfSYclPacqdX2UKGgGaAloD0MIUMJM279DcUCUhpRSlGgVTREBaBZHQJ9L5kFwDNh1fZQoaAZoCWgPQwia7+AnTp9wQJSGlFKUaBVNKwFoFkdAn0v8YEW69XV9lChoBmgJaA9DCH41BwgmZXNAlIaUUpRoFU0BAWgWR0CfS/xVhkRSdX2UKGgGaAloD0MIglMfSN42UUCUhpRSlGgVS9poFkdAn00DKLbYb3V9lChoBmgJaA9DCNRJtrpcJHFAlIaUUpRoFU0TAWgWR0CfTU/GlyimdX2UKGgGaAloD0MIYVRSJ2BRc0CUhpRSlGgVTS8BaBZHQJ9NXEvTPSl1fZQoaAZoCWgPQwjDt7BufFxzQJSGlFKUaBVNGwFoFkdAn02jTjNpunV9lChoBmgJaA9DCGqEfqbezG5AlIaUUpRoFU0GAWgWR0CfTl5f+jubdX2UKGgGaAloD0MIX5oiwOnickCUhpRSlGgVTSwBaBZHQJ9O3wgDA8B1fZQoaAZoCWgPQwgAyt+9Y+ByQJSGlFKUaBVNOwFoFkdAn1BZUPxx1nV9lChoBmgJaA9DCLhX5q16CXJAlIaUUpRoFUv3aBZHQJ9Qa2kSElF1fZQoaAZoCWgPQwj8byU7NqBwQJSGlFKUaBVNAAFoFkdAn1Fiz1K5CnV9lChoBmgJaA9DCEqZ1NDGLXJAlIaUUpRoFUv4aBZHQJ9SGf5DZ151fZQoaAZoCWgPQwhWuOUjqfduQJSGlFKUaBVL+WgWR0CfUlQ5WBBidX2UKGgGaAloD0MIWp2cobhhS0CUhpRSlGgVS7poFkdAn1K0mMOwxHV9lChoBmgJaA9DCCsSE9RweHBAlIaUUpRoFUvtaBZHQJ9WcDZDiOx1fZQoaAZoCWgPQwh9lBEXwFRxQJSGlFKUaBVNGgFoFkdAn1aGQKa5PXV9lChoBmgJaA9DCCRIpdjRhW5AlIaUUpRoFUv3aBZHQJ9WiAlOXVt1fZQoaAZoCWgPQwjrHAOy1wpyQJSGlFKUaBVNKwFoFkdAn1cvUe+23XV9lChoBmgJaA9DCLsLlBRYTHFAlIaUUpRoFU0NAWgWR0CfV25hBqsVdX2UKGgGaAloD0MIFQMkmsASb0CUhpRSlGgVS+hoFkdAn1fLylN1yXV9lChoBmgJaA9DCC8012kk83FAlIaUUpRoFU0nAWgWR0CfWC9RaX8gdX2UKGgGaAloD0MInieeswUacECUhpRSlGgVTR8BaBZHQJ9ZZxgiNbV1fZQoaAZoCWgPQwjPEfkupUFxQJSGlFKUaBVL62gWR0CfWZK9f1HwdX2UKGgGaAloD0MInrZGBOM4YUCUhpRSlGgVTegDaBZHQJ9aApON5t51fZQoaAZoCWgPQwiiQQqeQoRtQJSGlFKUaBVNGgFoFkdAn1tnmFJxvXV9lChoBmgJaA9DCG/W4H1VAnBAlIaUUpRoFUv4aBZHQJ9cHhHbypd1fZQoaAZoCWgPQwj4bvPGCURxQJSGlFKUaBVNAAFoFkdAn1zKMBIWg3V9lChoBmgJaA9DCF9E2zH1F21AlIaUUpRoFU0lAWgWR0CfXNUBnzxxdX2UKGgGaAloD0MIVACMZ9AwbUCUhpRSlGgVTVkBaBZHQJ9ffSThYNl1fZQoaAZoCWgPQwgFU82s5TlyQJSGlFKUaBVL6mgWR0CfYGw2VE/jdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8aa08660e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8aa0866170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8aa0866200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8aa0866290>", "_build": "<function ActorCriticPolicy._build at 0x7f8aa0866320>", "forward": "<function ActorCriticPolicy.forward at 0x7f8aa08663b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8aa0866440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8aa08664d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8aa0866560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8aa08665f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8aa0866680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8aa08b8210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651749532.8257618, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0Oyb0uCpg+4z/8PS/yxb4IPXG85+mKPQAAAAAAAAAA5gaLvSFfGj+mfNe86Q0Cv1Nizb1IetC7AAAAAAAAAACaawY96N2IPW0GZr6Bd5O+JRisvaCudDoAAAAAAAAAAEBlH74S4m0/wOcivvW+Fb/wUJK+IdgevQAAAAAAAAAAzTvIvK7n0bi2DG+2VM2JsZkLPTtsBpM1AACAPwAAgD+mtpA+Ryk/P+kVk772rAq/clx7PvqCjb4AAAAAAAAAAGbUszxfhS4/2isVvE1XBb8P7s688FfzPAAAAAAAAAAAcwuQPVeCMD4SSrm9U8i2vvM9tDwyeZi9AAAAAAAAAADzMNY9/BY+PrY5jb57VbO+a0yAvHjX4r0AAAAAAAAAAGbWcrvsueS7fmLCve3gn76ikya8Jo7ovgAAgD8AAIA/mikoO8PveLw6NBy+pkmXPEhCrj3Lf3C8AACAPwAAgD8z/sM87N+Iu/JDC7z+UIQ8l6bGvKIkYz0AAIA/AACAP5r5ujp7coi68yNUO1RfJ7PqVke6zrpYswAAgD8AAIA/rdh2vjb/0D5+jcY+XaMAv2/9h769IqU+AAAAAAAAAAA97AU/yRwYvsX1GbkFEME36r8Nvjf9OjgAAIA/AACAPwCVJ761SE0+kt3ePkEVub4FOLg9IqOMPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlNv2PSoPc0CUhpRSlIwBbJRL3owBdJRHQKexUApazNV1fZQoaAZoCWgPQwjfpj/7kdNvQJSGlFKUaBVLtWgWR0Cnsa1Q66redX2UKGgGaAloD0MITKd1G5QFc0CUhpRSlGgVS89oFkdAp7G+5QP7N3V9lChoBmgJaA9DCPq19dO/y3FAlIaUUpRoFUveaBZHQKexy3trsSl1fZQoaAZoCWgPQwgRUyKJHsxxQJSGlFKUaBVL1WgWR0CnsfRSYPXkdX2UKGgGaAloD0MIj6UPXVDnR0CUhpRSlGgVS4BoFkdAp7JZWHUMHHV9lChoBmgJaA9DCK8kea7voXNAlIaUUpRoFUvLaBZHQKeyeMju8bt1fZQoaAZoCWgPQwhtc2N6whVzQJSGlFKUaBVL3mgWR0CnspI4EOiGdX2UKGgGaAloD0MIGqchqjDWcECUhpRSlGgVS7toFkdAp7KjOTq0MXV9lChoBmgJaA9DCOiE0EGXDXNAlIaUUpRoFUvzaBZHQKey2bedkJ91fZQoaAZoCWgPQwjOT3EcOJ9yQJSGlFKUaBVL6GgWR0CnsybxNIsidX2UKGgGaAloD0MIkQn4NZLBcUCUhpRSlGgVS7BoFkdAp7N/XGwRoXV9lChoBmgJaA9DCPz/OGFCjG9AlIaUUpRoFUvraBZHQKezto6jnFJ1fZQoaAZoCWgPQwh32ERmbv5xQJSGlFKUaBVL2GgWR0Cns+x8UmD2dX2UKGgGaAloD0MIpwUv+spwckCUhpRSlGgVS8BoFkdAp7QWE4//vXV9lChoBmgJaA9DCIRGsHF98nBAlIaUUpRoFUviaBZHQKe0Jrv9cbB1fZQoaAZoCWgPQwhBRGraRZhxQJSGlFKUaBVLxWgWR0CntKY/NZ/1dX2UKGgGaAloD0MITifZ6nJBcECUhpRSlGgVS8hoFkdAp7SlqSHM2XV9lChoBmgJaA9DCNcTXRd+u3FAlIaUUpRoFUvyaBZHQKe0tm/336B1fZQoaAZoCWgPQwg3/G66Ze5wQJSGlFKUaBVL0mgWR0CntLp7b+LndX2UKGgGaAloD0MIMILGTOIpc0CUhpRSlGgVS89oFkdAp7T4VVPva3V9lChoBmgJaA9DCMsUcxB0nHJAlIaUUpRoFUvLaBZHQKe1bgYP5Hp1fZQoaAZoCWgPQwhP54pSAjBzQJSGlFKUaBVL9WgWR0CntfJUo8ZDdX2UKGgGaAloD0MIUkfH1Ug+cUCUhpRSlGgVS+FoFkdAp7XymEXcg3V9lChoBmgJaA9DCO7Nb5goxXFAlIaUUpRoFUveaBZHQKe2cWAwwkB1fZQoaAZoCWgPQwhFEyhi0SlxQJSGlFKUaBVL02gWR0CntqZYoy9FdX2UKGgGaAloD0MILEme63tjckCUhpRSlGgVS9FoFkdAp7bZ9XtBwHV9lChoBmgJaA9DCHcTfNM0tnNAlIaUUpRoFUvVaBZHQKe3bEkSmIl1fZQoaAZoCWgPQwhKXp1jACZyQJSGlFKUaBVL3GgWR0Cnt3jziCJ5dX2UKGgGaAloD0MI4Ln3cEkAcUCUhpRSlGgVS8RoFkdAp7e6UgSvknV9lChoBmgJaA9DCDdStkjacHFAlIaUUpRoFUvDaBZHQKe3x8w5/9Z1fZQoaAZoCWgPQwhqwvaTMUlyQJSGlFKUaBVLx2gWR0CnuCK20AtGdX2UKGgGaAloD0MISG5Nuu00cECUhpRSlGgVS+doFkdAp7hPbfxc3XV9lChoBmgJaA9DCKLVyRnKBHJAlIaUUpRoFUvoaBZHQKe4aWl/H5t1fZQoaAZoCWgPQwgCEeLKWcNxQJSGlFKUaBVLyWgWR0CnxzjJEH+qdX2UKGgGaAloD0MIMo6R7JGScUCUhpRSlGgVS/loFkdAp8d8TL4etHV9lChoBmgJaA9DCNFa0ea4xW9AlIaUUpRoFUvWaBZHQKfHeWGh24d1fZQoaAZoCWgPQwgoKEUrN6ZxQJSGlFKUaBVLwWgWR0Cnx+OEmICVdX2UKGgGaAloD0MIR+hn6jXRcUCUhpRSlGgVTdABaBZHQKfIL+n62v11fZQoaAZoCWgPQwge3J21WydxQJSGlFKUaBVL4mgWR0CnyEG2CulodX2UKGgGaAloD0MInE1HALe1bUCUhpRSlGgVS81oFkdAp8hSHsTnJXV9lChoBmgJaA9DCOpBQSnavW5AlIaUUpRoFUvCaBZHQKfIrmYjSoh1fZQoaAZoCWgPQwgRbcfUXUduQJSGlFKUaBVLwmgWR0CnyLn003wTdX2UKGgGaAloD0MICDwwgPBKb0CUhpRSlGgVS8xoFkdAp8ke6K+BYnV9lChoBmgJaA9DCBwIyQKmk3JAlIaUUpRoFU3JAWgWR0CnyUCCz1K5dX2UKGgGaAloD0MIOgK4Wby0cECUhpRSlGgVS8hoFkdAp8l5sj3VTnV9lChoBmgJaA9DCOWzPA9uI3JAlIaUUpRoFUvlaBZHQKfJlhOxjax1fZQoaAZoCWgPQwhpjqz8skJxQJSGlFKUaBVLw2gWR0CnyaWtlqagdX2UKGgGaAloD0MIQL6ECo5Hc0CUhpRSlGgVS85oFkdAp8m3RJEpiXV9lChoBmgJaA9DCFvqIK/H+3NAlIaUUpRoFUvLaBZHQKfKkMhHLA51fZQoaAZoCWgPQwgWS5F8JYRyQJSGlFKUaBVLxGgWR0Cnyq+SbH6udX2UKGgGaAloD0MI/tMNFDiYcUCUhpRSlGgVS9ZoFkdAp8r5zLfUF3V9lChoBmgJaA9DCPGg2XWvFnJAlIaUUpRoFUvKaBZHQKfLKsYEW691fZQoaAZoCWgPQwhklj0JrEVwQJSGlFKUaBVLxmgWR0Cny1zWXkYGdX2UKGgGaAloD0MI6fNRRtwfcUCUhpRSlGgVS8ZoFkdAp8tvvBrN4nV9lChoBmgJaA9DCL8K8N3mk3BAlIaUUpRoFUuxaBZHQKfLlj6vaDh1fZQoaAZoCWgPQwgCnUmbquJuQJSGlFKUaBVL2GgWR0Cny9BmGucMdX2UKGgGaAloD0MIoG6gwPvqckCUhpRSlGgVS89oFkdAp8wG5Fw1i3V9lChoBmgJaA9DCIDW/PgLJHJAlIaUUpRoFUvBaBZHQKfMP71Iy0t1fZQoaAZoCWgPQwjB4nDm19NxQJSGlFKUaBVL1WgWR0CnzSydOIqLdX2UKGgGaAloD0MIswxxrAvLckCUhpRSlGgVS/JoFkdAp81EC/47BHV9lChoBmgJaA9DCGptGtvrgnFAlIaUUpRoFUvfaBZHQKfNSgpz90l1fZQoaAZoCWgPQwjOjH403H5yQJSGlFKUaBVL8WgWR0CnzXlgtvn9dX2UKGgGaAloD0MIhbLw9bUuyz+UhpRSlGgVS1xoFkdAp83fQQcxTXV9lChoBmgJaA9DCPJBz2ZV+nBAlIaUUpRoFUvtaBZHQKfOsOYIBzV1fZQoaAZoCWgPQwgFNXwLa1pyQJSGlFKUaBVLw2gWR0CnzuSeZof0dX2UKGgGaAloD0MInPwWneywckCUhpRSlGgVS+BoFkdAp88jw6QvH3V9lChoBmgJaA9DCL/v37y473JAlIaUUpRoFUvMaBZHQKfPO6jnFHd1fZQoaAZoCWgPQwjNBS6PNSZyQJSGlFKUaBVL72gWR0CnzzaQ3gk1dX2UKGgGaAloD0MIwmosYW2eckCUhpRSlGgVS8hoFkdAp89m5Yoy9HV9lChoBmgJaA9DCNsUj4uq2nFAlIaUUpRoFU0RAWgWR0Cnz4EqtozvdX2UKGgGaAloD0MITpmbb4Quc0CUhpRSlGgVS9poFkdAp8/3gaWHDnV9lChoBmgJaA9DCBbCaixhzVZAlIaUUpRoFU3oA2gWR0Cn0Rl6iTMadX2UKGgGaAloD0MIq15+pwlIc0CUhpRSlGgVS9RoFkdAp9FoTdtVJnV9lChoBmgJaA9DCGMIAI59fHBAlIaUUpRoFUvpaBZHQKfRk6GxlhB1fZQoaAZoCWgPQwj2l92TR9tyQJSGlFKUaBVL5WgWR0Cn0ifDk2gndX2UKGgGaAloD0MIzLc+rPeTcECUhpRSlGgVS7poFkdAp9KaJ66as3V9lChoBmgJaA9DCBgLQ+T0Y3BAlIaUUpRoFUvSaBZHQKfSoo4MnZ11fZQoaAZoCWgPQwj/6Js0TWdyQJSGlFKUaBVL3GgWR0Cn0v9UCJXRdX2UKGgGaAloD0MI+fiE7LzHcECUhpRSlGgVS9loFkdAp9M/bsWweXV9lChoBmgJaA9DCInPnWC/f3FAlIaUUpRoFUvYaBZHQKfTNc9nscB1fZQoaAZoCWgPQwi/KaxU0KFyQJSGlFKUaBVNTQFoFkdAp9NuzOX3QHV9lChoBmgJaA9DCK/rF+zGRHNAlIaUUpRoFUvaaBZHQKfTh9Nvfj11fZQoaAZoCWgPQwiXPJ6Wn3ZwQJSGlFKUaBVL5GgWR0Cn05u9nK4hdX2UKGgGaAloD0MIRnnm5bAGb0CUhpRSlGgVS9toFkdAp9P8AYHgP3V9lChoBmgJaA9DCLGKNzKPTHFAlIaUUpRoFUvXaBZHQKfU8Hmig011fZQoaAZoCWgPQwhD5V/La/VxQJSGlFKUaBVL0WgWR0Cn1UgWBSUDdX2UKGgGaAloD0MIJ92WyEUNckCUhpRSlGgVS+toFkdAp9WWnIhhY3V9lChoBmgJaA9DCFw4EJLFmnNAlIaUUpRoFUvKaBZHQKfVvJnxri51fZQoaAZoCWgPQwj0N6EQQZdzQJSGlFKUaBVNUQJoFkdAp9YMBXCCSXV9lChoBmgJaA9DCGzLgLOUBnJAlIaUUpRoFUvTaBZHQKfWUSOBDoh1fZQoaAZoCWgPQwhYWHA/oG9yQJSGlFKUaBVNCAJoFkdAp9aZBC2MKnV9lChoBmgJaA9DCOf9f5xwyHBAlIaUUpRoFUvlaBZHQKfWp2YfGMp1fZQoaAZoCWgPQwhu93KfXJhxQJSGlFKUaBVL02gWR0Cn1rDoyKvWdX2UKGgGaAloD0MIya1JtyWncECUhpRSlGgVS8JoFkdAp9buHck+o3V9lChoBmgJaA9DCP4sliI5/HBAlIaUUpRoFUvHaBZHQKfW6pG4I8h1fZQoaAZoCWgPQwjncRjMH5NyQJSGlFKUaBVL3WgWR0Cn1xeo1k1/dX2UKGgGaAloD0MIJxQi4BCEcUCUhpRSlGgVS99oFkdAp9cVT987ZHV9lChoBmgJaA9DCJlLqrYbw3BAlIaUUpRoFUvYaBZHQKfXVSUC7sh1fZQoaAZoCWgPQwiuDoC46zVyQJSGlFKUaBVL0WgWR0Cn15Dslb/wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53d25b334018f9b98dfa62067690ccee12f2329727d868e166d6ac4d95198077
3
- size 144060
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203c7d0e3fd75e7814a20b25519c1f23e9f8b913198b42374457e3fa9360f1fe
3
+ size 143988
ppo-LunarLander-v2/data CHANGED
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651745167.2732997,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo+i73DwTS6y/50uvBzkLU9vQy6gtKQOQAAAAAAAIA/MyoQvXv2grqKuVK3kZowslrCk7qe1XU2AACAPwAAgD8zJpK8H2aXu17Ftzxca0899TbTPGBsjLsAAIA/AACAP4AYgD1x7WS5Y5ENNPUq267RhDw6pfq9swAAgD8AAIA/mqXiO0h/lbrSgwM20TfIMGbT37qBdB+1AACAPwAAgD+aYQs71t2UPmdtQr1O0oa+jiogvf39FTwAAAAAAAAAAGY+azvD9Se6Umd2trfj0rHLhYI7fyuVNQAAgD8AAIA/ba5QPhGVrD4r1oW+1Iyjvp/rqjw4vFw9AAAAAAAAAAAzKq88w49vvM1dJzyMSnM8Iu3TPZ2NRr0AAIA/AACAP2YCKrxIuY66f3egNgQHnzGHBAw7b3K5tQAAgD8AAIA/mngyvcNlJ7pICxU5Pt2vNJnUFjtV7Cy4AACAPwAAgD8VB5G+I5ZuP3+gr77fF9K+h5jDvvlepDwAAAAAAAAAAFOgBz7HRgg+xG2dvkm7QL7MOcS9eAivvQAAAAAAAAAAmg6gvdiZ6j79Dds8gpqfvj91a73tSl89AAAAAAAAAAATAAO+adcCvIy+kb1yDRg95uY4Pf61ITwAAIA/AAAAAM1qzT3+vZY/b+e6PiwkB7/csg8+GKL0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVWhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxOv6BTsacUCUhpRSlIwBbJRNkAGMAXSUR0CfBBL3K0UodX2UKGgGaAloD0MIeZRKeMLLcUCUhpRSlGgVTQMBaBZHQJ8E7xH5Jsh1fZQoaAZoCWgPQwibcoV3uZhxQJSGlFKUaBVL+WgWR0CfBenEVFhHdX2UKGgGaAloD0MIf95UpIIlc0CUhpRSlGgVS+toFkdAnwYuU6gdwXV9lChoBmgJaA9DCBTtKqS8snFAlIaUUpRoFUv8aBZHQJ8GWukk8ih1fZQoaAZoCWgPQwgJNUOqqFJuQJSGlFKUaBVNDAFoFkdAnwjkxREWqXV9lChoBmgJaA9DCP/KSpOSK3JAlIaUUpRoFU0YAWgWR0CfCTLLIPsidX2UKGgGaAloD0MIUfcBSK0IckCUhpRSlGgVS/NoFkdAnwk7uDzy0HV9lChoBmgJaA9DCPRqgNLQlnJAlIaUUpRoFUvzaBZHQJ8Jg/6frbB1fZQoaAZoCWgPQwicwHRat3xyQJSGlFKUaBVNCAFoFkdAnwnUXcgyM3V9lChoBmgJaA9DCKyOHOlMBnNAlIaUUpRoFU0MAWgWR0CfCgdLg4wRdX2UKGgGaAloD0MIAtU/iGR3cUCUhpRSlGgVS+BoFkdAnwtwH/tICnV9lChoBmgJaA9DCJvJN9tc1XJAlIaUUpRoFUvpaBZHQJ8Lg8q4H5d1fZQoaAZoCWgPQwhbKJmc2ipvQJSGlFKUaBVNCQFoFkdAnwxUgOjIrHV9lChoBmgJaA9DCELr4cuETHFAlIaUUpRoFUv/aBZHQJ8Md3A2ycF1fZQoaAZoCWgPQwhuMxXikZ5uQJSGlFKUaBVNHAFoFkdAnw2z7/GVA3V9lChoBmgJaA9DCJ7vp8aLznBAlIaUUpRoFU08AWgWR0CfDjZ39rGjdX2UKGgGaAloD0MIsOO/QJDPckCUhpRSlGgVS/loFkdAnw6kHdGiH3V9lChoBmgJaA9DCAMmcOvuR21AlIaUUpRoFU0CAWgWR0CfDznM+u/2dX2UKGgGaAloD0MI7N/1mXOcckCUhpRSlGgVTSkBaBZHQJ8PV3LV4HJ1fZQoaAZoCWgPQwik/nqFBYRxQJSGlFKUaBVNIgFoFkdAnxB14xDb8HV9lChoBmgJaA9DCPZBlgUT/29AlIaUUpRoFUvraBZHQJ8SLFqBVdZ1fZQoaAZoCWgPQwi6LZELzmZwQJSGlFKUaBVL/GgWR0CfEi3lCCz1dX2UKGgGaAloD0MIDixHyEDmb0CUhpRSlGgVS/9oFkdAnxJDurp7kXV9lChoBmgJaA9DCNJzC13JH3NAlIaUUpRoFUv8aBZHQJ8SedoWYWt1fZQoaAZoCWgPQwi/SdOgaMxvQJSGlFKUaBVNEAFoFkdAnxKQ0fozN3V9lChoBmgJaA9DCI55HXHIrXJAlIaUUpRoFU0ZAWgWR0CfE9bhm5DrdX2UKGgGaAloD0MIGXEBaFQ8cECUhpRSlGgVS/1oFkdAnxRaCg9Ne3V9lChoBmgJaA9DCJ268lme3XFAlIaUUpRoFU0XAWgWR0CfFTEdNnGsdX2UKGgGaAloD0MI1qvI6MDkcUCUhpRSlGgVTQsBaBZHQJ8VqmIj4Yd1fZQoaAZoCWgPQwgXLNUFvEBMQJSGlFKUaBVLuWgWR0CfFaoBaLXMdX2UKGgGaAloD0MI0m2JXHDjcUCUhpRSlGgVTRkBaBZHQJ8WQL5RCQd1fZQoaAZoCWgPQwhEaW/whcRwQJSGlFKUaBVNEQFoFkdAnxcw2l2vCHV9lChoBmgJaA9DCGniHeCJ8XFAlIaUUpRoFU0eAWgWR0CfGCBnSOR1dX2UKGgGaAloD0MI/1w0ZPysckCUhpRSlGgVTRkBaBZHQJ8YWIwdsBR1fZQoaAZoCWgPQwgO12oPe21uQJSGlFKUaBVNKAFoFkdAnxlxX0XgtXV9lChoBmgJaA9DCM7ixcIQGXFAlIaUUpRoFU0NAWgWR0CfGc7T2FnJdX2UKGgGaAloD0MIkwA1tWwNcECUhpRSlGgVS+hoFkdAnxopW/8EV3V9lChoBmgJaA9DCIkLQKO0PnJAlIaUUpRoFUvxaBZHQJ8akSAYpDx1fZQoaAZoCWgPQwgOvFruDAtxQJSGlFKUaBVL92gWR0CfGwspobn6dX2UKGgGaAloD0MIQ8ajVMIEcUCUhpRSlGgVS/9oFkdAnxy2UfPom3V9lChoBmgJaA9DCPHUIw2uGnJAlIaUUpRoFUv0aBZHQJ8c2oQ4CIV1fZQoaAZoCWgPQwjoMjUJHoRyQJSGlFKUaBVNRwFoFkdAnx1fDpC8e3V9lChoBmgJaA9DCFfqWRCKHHNAlIaUUpRoFUvtaBZHQJ8d0W0qpcZ1fZQoaAZoCWgPQwiRDg9hfIlyQJSGlFKUaBVNUAFoFkdAnx3tDYywfXV9lChoBmgJaA9DCFfNc0Q+PXJAlIaUUpRoFUv8aBZHQJ8eS/Firkt1fZQoaAZoCWgPQwi/1qVGqL9wQJSGlFKUaBVNFgFoFkdAnx61Oj7AL3V9lChoBmgJaA9DCIem7PSDzXFAlIaUUpRoFU0IAWgWR0CfHy/C66J7dX2UKGgGaAloD0MILquwGWA0ckCUhpRSlGgVTQ4BaBZHQJ87eu+yquN1fZQoaAZoCWgPQwgewvhpXCRvQJSGlFKUaBVL/2gWR0CfPSDlHSWrdX2UKGgGaAloD0MI0/iFV5LwcECUhpRSlGgVTSIBaBZHQJ89Rq59Vm11fZQoaAZoCWgPQwiNtiqJLAtxQJSGlFKUaBVNOAFoFkdAnz3YN3GGVXV9lChoBmgJaA9DCI+n5QeuK25AlIaUUpRoFU0lAWgWR0CfP8nezlcRdX2UKGgGaAloD0MILGUZ4hgOcUCUhpRSlGgVTTABaBZHQJ8/yZWq95B1fZQoaAZoCWgPQwijkGRWr6ZyQJSGlFKUaBVL9WgWR0CfQJIYFaB7dX2UKGgGaAloD0MIJCcTt8o+cECUhpRSlGgVS/1oFkdAn0GRIOH313V9lChoBmgJaA9DCJ+sGK4O/k9AlIaUUpRoFUvJaBZHQJ9B3FPznRt1fZQoaAZoCWgPQwireCPzCOpwQJSGlFKUaBVNIwFoFkdAn0JSM98qnXV9lChoBmgJaA9DCEQV/gyvJnFAlIaUUpRoFU1kAWgWR0CfQvK6WgOCdX2UKGgGaAloD0MIayqLwu51cUCUhpRSlGgVTQMBaBZHQJ9DAWP91lp1fZQoaAZoCWgPQwgYXHNHPyVyQJSGlFKUaBVNIwFoFkdAn0PBx1gYxnV9lChoBmgJaA9DCIdSexGtzXBAlIaUUpRoFUvvaBZHQJ9EkQtjCpF1fZQoaAZoCWgPQwi/1qVGaCxuQJSGlFKUaBVNQAFoFkdAn0SuEVWS2nV9lChoBmgJaA9DCCYZOQu77HFAlIaUUpRoFU0mAWgWR0CfRL85jpcHdX2UKGgGaAloD0MIMjogCTtbcUCUhpRSlGgVTQgBaBZHQJ9HEyxiXpp1fZQoaAZoCWgPQwhnKO54k+hyQJSGlFKUaBVNFgFoFkdAn0fNYSxqwnV9lChoBmgJaA9DCNDukGIAC3FAlIaUUpRoFU0hAWgWR0CfSNK02LpBdX2UKGgGaAloD0MIK4nsgywGcECUhpRSlGgVS/VoFkdAn0kGpQ1rI3V9lChoBmgJaA9DCPNZngf33G1AlIaUUpRoFU0CAWgWR0CfSYclPacqdX2UKGgGaAloD0MIUMJM279DcUCUhpRSlGgVTREBaBZHQJ9L5kFwDNh1fZQoaAZoCWgPQwia7+AnTp9wQJSGlFKUaBVNKwFoFkdAn0v8YEW69XV9lChoBmgJaA9DCH41BwgmZXNAlIaUUpRoFU0BAWgWR0CfS/xVhkRSdX2UKGgGaAloD0MIglMfSN42UUCUhpRSlGgVS9poFkdAn00DKLbYb3V9lChoBmgJaA9DCNRJtrpcJHFAlIaUUpRoFU0TAWgWR0CfTU/GlyimdX2UKGgGaAloD0MIYVRSJ2BRc0CUhpRSlGgVTS8BaBZHQJ9NXEvTPSl1fZQoaAZoCWgPQwjDt7BufFxzQJSGlFKUaBVNGwFoFkdAn02jTjNpunV9lChoBmgJaA9DCGqEfqbezG5AlIaUUpRoFU0GAWgWR0CfTl5f+jubdX2UKGgGaAloD0MIX5oiwOnickCUhpRSlGgVTSwBaBZHQJ9O3wgDA8B1fZQoaAZoCWgPQwgAyt+9Y+ByQJSGlFKUaBVNOwFoFkdAn1BZUPxx1nV9lChoBmgJaA9DCLhX5q16CXJAlIaUUpRoFUv3aBZHQJ9Qa2kSElF1fZQoaAZoCWgPQwj8byU7NqBwQJSGlFKUaBVNAAFoFkdAn1Fiz1K5CnV9lChoBmgJaA9DCEqZ1NDGLXJAlIaUUpRoFUv4aBZHQJ9SGf5DZ151fZQoaAZoCWgPQwhWuOUjqfduQJSGlFKUaBVL+WgWR0CfUlQ5WBBidX2UKGgGaAloD0MIWp2cobhhS0CUhpRSlGgVS7poFkdAn1K0mMOwxHV9lChoBmgJaA9DCCsSE9RweHBAlIaUUpRoFUvtaBZHQJ9WcDZDiOx1fZQoaAZoCWgPQwh9lBEXwFRxQJSGlFKUaBVNGgFoFkdAn1aGQKa5PXV9lChoBmgJaA9DCCRIpdjRhW5AlIaUUpRoFUv3aBZHQJ9WiAlOXVt1fZQoaAZoCWgPQwjrHAOy1wpyQJSGlFKUaBVNKwFoFkdAn1cvUe+23XV9lChoBmgJaA9DCLsLlBRYTHFAlIaUUpRoFU0NAWgWR0CfV25hBqsVdX2UKGgGaAloD0MIFQMkmsASb0CUhpRSlGgVS+hoFkdAn1fLylN1yXV9lChoBmgJaA9DCC8012kk83FAlIaUUpRoFU0nAWgWR0CfWC9RaX8gdX2UKGgGaAloD0MInieeswUacECUhpRSlGgVTR8BaBZHQJ9ZZxgiNbV1fZQoaAZoCWgPQwjPEfkupUFxQJSGlFKUaBVL62gWR0CfWZK9f1HwdX2UKGgGaAloD0MInrZGBOM4YUCUhpRSlGgVTegDaBZHQJ9aApON5t51fZQoaAZoCWgPQwiiQQqeQoRtQJSGlFKUaBVNGgFoFkdAn1tnmFJxvXV9lChoBmgJaA9DCG/W4H1VAnBAlIaUUpRoFUv4aBZHQJ9cHhHbypd1fZQoaAZoCWgPQwj4bvPGCURxQJSGlFKUaBVNAAFoFkdAn1zKMBIWg3V9lChoBmgJaA9DCF9E2zH1F21AlIaUUpRoFU0lAWgWR0CfXNUBnzxxdX2UKGgGaAloD0MIVACMZ9AwbUCUhpRSlGgVTVkBaBZHQJ9ffSThYNl1fZQoaAZoCWgPQwgFU82s5TlyQJSGlFKUaBVL6mgWR0CfYGw2VE/jdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 372,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651749532.8257618,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0Oyb0uCpg+4z/8PS/yxb4IPXG85+mKPQAAAAAAAAAA5gaLvSFfGj+mfNe86Q0Cv1Nizb1IetC7AAAAAAAAAACaawY96N2IPW0GZr6Bd5O+JRisvaCudDoAAAAAAAAAAEBlH74S4m0/wOcivvW+Fb/wUJK+IdgevQAAAAAAAAAAzTvIvK7n0bi2DG+2VM2JsZkLPTtsBpM1AACAPwAAgD+mtpA+Ryk/P+kVk772rAq/clx7PvqCjb4AAAAAAAAAAGbUszxfhS4/2isVvE1XBb8P7s688FfzPAAAAAAAAAAAcwuQPVeCMD4SSrm9U8i2vvM9tDwyeZi9AAAAAAAAAADzMNY9/BY+PrY5jb57VbO+a0yAvHjX4r0AAAAAAAAAAGbWcrvsueS7fmLCve3gn76ikya8Jo7ovgAAgD8AAIA/mikoO8PveLw6NBy+pkmXPEhCrj3Lf3C8AACAPwAAgD8z/sM87N+Iu/JDC7z+UIQ8l6bGvKIkYz0AAIA/AACAP5r5ujp7coi68yNUO1RfJ7PqVke6zrpYswAAgD8AAIA/rdh2vjb/0D5+jcY+XaMAv2/9h769IqU+AAAAAAAAAAA97AU/yRwYvsX1GbkFEME36r8Nvjf9OjgAAIA/AACAPwCVJ761SE0+kt3ePkEVub4FOLg9IqOMPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlNv2PSoPc0CUhpRSlIwBbJRL3owBdJRHQKexUApazNV1fZQoaAZoCWgPQwjfpj/7kdNvQJSGlFKUaBVLtWgWR0Cnsa1Q66redX2UKGgGaAloD0MITKd1G5QFc0CUhpRSlGgVS89oFkdAp7G+5QP7N3V9lChoBmgJaA9DCPq19dO/y3FAlIaUUpRoFUveaBZHQKexy3trsSl1fZQoaAZoCWgPQwgRUyKJHsxxQJSGlFKUaBVL1WgWR0CnsfRSYPXkdX2UKGgGaAloD0MIj6UPXVDnR0CUhpRSlGgVS4BoFkdAp7JZWHUMHHV9lChoBmgJaA9DCK8kea7voXNAlIaUUpRoFUvLaBZHQKeyeMju8bt1fZQoaAZoCWgPQwhtc2N6whVzQJSGlFKUaBVL3mgWR0CnspI4EOiGdX2UKGgGaAloD0MIGqchqjDWcECUhpRSlGgVS7toFkdAp7KjOTq0MXV9lChoBmgJaA9DCOiE0EGXDXNAlIaUUpRoFUvzaBZHQKey2bedkJ91fZQoaAZoCWgPQwjOT3EcOJ9yQJSGlFKUaBVL6GgWR0CnsybxNIsidX2UKGgGaAloD0MIkQn4NZLBcUCUhpRSlGgVS7BoFkdAp7N/XGwRoXV9lChoBmgJaA9DCPz/OGFCjG9AlIaUUpRoFUvraBZHQKezto6jnFJ1fZQoaAZoCWgPQwh32ERmbv5xQJSGlFKUaBVL2GgWR0Cns+x8UmD2dX2UKGgGaAloD0MIpwUv+spwckCUhpRSlGgVS8BoFkdAp7QWE4//vXV9lChoBmgJaA9DCIRGsHF98nBAlIaUUpRoFUviaBZHQKe0Jrv9cbB1fZQoaAZoCWgPQwhBRGraRZhxQJSGlFKUaBVLxWgWR0CntKY/NZ/1dX2UKGgGaAloD0MITifZ6nJBcECUhpRSlGgVS8hoFkdAp7SlqSHM2XV9lChoBmgJaA9DCNcTXRd+u3FAlIaUUpRoFUvyaBZHQKe0tm/336B1fZQoaAZoCWgPQwg3/G66Ze5wQJSGlFKUaBVL0mgWR0CntLp7b+LndX2UKGgGaAloD0MIMILGTOIpc0CUhpRSlGgVS89oFkdAp7T4VVPva3V9lChoBmgJaA9DCMsUcxB0nHJAlIaUUpRoFUvLaBZHQKe1bgYP5Hp1fZQoaAZoCWgPQwhP54pSAjBzQJSGlFKUaBVL9WgWR0CntfJUo8ZDdX2UKGgGaAloD0MIUkfH1Ug+cUCUhpRSlGgVS+FoFkdAp7XymEXcg3V9lChoBmgJaA9DCO7Nb5goxXFAlIaUUpRoFUveaBZHQKe2cWAwwkB1fZQoaAZoCWgPQwhFEyhi0SlxQJSGlFKUaBVL02gWR0CntqZYoy9FdX2UKGgGaAloD0MILEme63tjckCUhpRSlGgVS9FoFkdAp7bZ9XtBwHV9lChoBmgJaA9DCHcTfNM0tnNAlIaUUpRoFUvVaBZHQKe3bEkSmIl1fZQoaAZoCWgPQwhKXp1jACZyQJSGlFKUaBVL3GgWR0Cnt3jziCJ5dX2UKGgGaAloD0MI4Ln3cEkAcUCUhpRSlGgVS8RoFkdAp7e6UgSvknV9lChoBmgJaA9DCDdStkjacHFAlIaUUpRoFUvDaBZHQKe3x8w5/9Z1fZQoaAZoCWgPQwhqwvaTMUlyQJSGlFKUaBVLx2gWR0CnuCK20AtGdX2UKGgGaAloD0MISG5Nuu00cECUhpRSlGgVS+doFkdAp7hPbfxc3XV9lChoBmgJaA9DCKLVyRnKBHJAlIaUUpRoFUvoaBZHQKe4aWl/H5t1fZQoaAZoCWgPQwgCEeLKWcNxQJSGlFKUaBVLyWgWR0CnxzjJEH+qdX2UKGgGaAloD0MIMo6R7JGScUCUhpRSlGgVS/loFkdAp8d8TL4etHV9lChoBmgJaA9DCNFa0ea4xW9AlIaUUpRoFUvWaBZHQKfHeWGh24d1fZQoaAZoCWgPQwgoKEUrN6ZxQJSGlFKUaBVLwWgWR0Cnx+OEmICVdX2UKGgGaAloD0MIR+hn6jXRcUCUhpRSlGgVTdABaBZHQKfIL+n62v11fZQoaAZoCWgPQwge3J21WydxQJSGlFKUaBVL4mgWR0CnyEG2CulodX2UKGgGaAloD0MInE1HALe1bUCUhpRSlGgVS81oFkdAp8hSHsTnJXV9lChoBmgJaA9DCOpBQSnavW5AlIaUUpRoFUvCaBZHQKfIrmYjSoh1fZQoaAZoCWgPQwgRbcfUXUduQJSGlFKUaBVLwmgWR0CnyLn003wTdX2UKGgGaAloD0MICDwwgPBKb0CUhpRSlGgVS8xoFkdAp8ke6K+BYnV9lChoBmgJaA9DCBwIyQKmk3JAlIaUUpRoFU3JAWgWR0CnyUCCz1K5dX2UKGgGaAloD0MIOgK4Wby0cECUhpRSlGgVS8hoFkdAp8l5sj3VTnV9lChoBmgJaA9DCOWzPA9uI3JAlIaUUpRoFUvlaBZHQKfJlhOxjax1fZQoaAZoCWgPQwhpjqz8skJxQJSGlFKUaBVLw2gWR0CnyaWtlqagdX2UKGgGaAloD0MIQL6ECo5Hc0CUhpRSlGgVS85oFkdAp8m3RJEpiXV9lChoBmgJaA9DCFvqIK/H+3NAlIaUUpRoFUvLaBZHQKfKkMhHLA51fZQoaAZoCWgPQwgWS5F8JYRyQJSGlFKUaBVLxGgWR0Cnyq+SbH6udX2UKGgGaAloD0MI/tMNFDiYcUCUhpRSlGgVS9ZoFkdAp8r5zLfUF3V9lChoBmgJaA9DCPGg2XWvFnJAlIaUUpRoFUvKaBZHQKfLKsYEW691fZQoaAZoCWgPQwhklj0JrEVwQJSGlFKUaBVLxmgWR0Cny1zWXkYGdX2UKGgGaAloD0MI6fNRRtwfcUCUhpRSlGgVS8ZoFkdAp8tvvBrN4nV9lChoBmgJaA9DCL8K8N3mk3BAlIaUUpRoFUuxaBZHQKfLlj6vaDh1fZQoaAZoCWgPQwgCnUmbquJuQJSGlFKUaBVL2GgWR0Cny9BmGucMdX2UKGgGaAloD0MIoG6gwPvqckCUhpRSlGgVS89oFkdAp8wG5Fw1i3V9lChoBmgJaA9DCIDW/PgLJHJAlIaUUpRoFUvBaBZHQKfMP71Iy0t1fZQoaAZoCWgPQwjB4nDm19NxQJSGlFKUaBVL1WgWR0CnzSydOIqLdX2UKGgGaAloD0MIswxxrAvLckCUhpRSlGgVS/JoFkdAp81EC/47BHV9lChoBmgJaA9DCGptGtvrgnFAlIaUUpRoFUvfaBZHQKfNSgpz90l1fZQoaAZoCWgPQwjOjH403H5yQJSGlFKUaBVL8WgWR0CnzXlgtvn9dX2UKGgGaAloD0MIhbLw9bUuyz+UhpRSlGgVS1xoFkdAp83fQQcxTXV9lChoBmgJaA9DCPJBz2ZV+nBAlIaUUpRoFUvtaBZHQKfOsOYIBzV1fZQoaAZoCWgPQwgFNXwLa1pyQJSGlFKUaBVLw2gWR0CnzuSeZof0dX2UKGgGaAloD0MInPwWneywckCUhpRSlGgVS+BoFkdAp88jw6QvH3V9lChoBmgJaA9DCL/v37y473JAlIaUUpRoFUvMaBZHQKfPO6jnFHd1fZQoaAZoCWgPQwjNBS6PNSZyQJSGlFKUaBVL72gWR0CnzzaQ3gk1dX2UKGgGaAloD0MIwmosYW2eckCUhpRSlGgVS8hoFkdAp89m5Yoy9HV9lChoBmgJaA9DCNsUj4uq2nFAlIaUUpRoFU0RAWgWR0Cnz4EqtozvdX2UKGgGaAloD0MITpmbb4Quc0CUhpRSlGgVS9poFkdAp8/3gaWHDnV9lChoBmgJaA9DCBbCaixhzVZAlIaUUpRoFU3oA2gWR0Cn0Rl6iTMadX2UKGgGaAloD0MIq15+pwlIc0CUhpRSlGgVS9RoFkdAp9FoTdtVJnV9lChoBmgJaA9DCGMIAI59fHBAlIaUUpRoFUvpaBZHQKfRk6GxlhB1fZQoaAZoCWgPQwj2l92TR9tyQJSGlFKUaBVL5WgWR0Cn0ifDk2gndX2UKGgGaAloD0MIzLc+rPeTcECUhpRSlGgVS7poFkdAp9KaJ66as3V9lChoBmgJaA9DCBgLQ+T0Y3BAlIaUUpRoFUvSaBZHQKfSoo4MnZ11fZQoaAZoCWgPQwj/6Js0TWdyQJSGlFKUaBVL3GgWR0Cn0v9UCJXRdX2UKGgGaAloD0MI+fiE7LzHcECUhpRSlGgVS9loFkdAp9M/bsWweXV9lChoBmgJaA9DCInPnWC/f3FAlIaUUpRoFUvYaBZHQKfTNc9nscB1fZQoaAZoCWgPQwi/KaxU0KFyQJSGlFKUaBVNTQFoFkdAp9NuzOX3QHV9lChoBmgJaA9DCK/rF+zGRHNAlIaUUpRoFUvaaBZHQKfTh9Nvfj11fZQoaAZoCWgPQwiXPJ6Wn3ZwQJSGlFKUaBVL5GgWR0Cn05u9nK4hdX2UKGgGaAloD0MIRnnm5bAGb0CUhpRSlGgVS9toFkdAp9P8AYHgP3V9lChoBmgJaA9DCLGKNzKPTHFAlIaUUpRoFUvXaBZHQKfU8Hmig011fZQoaAZoCWgPQwhD5V/La/VxQJSGlFKUaBVL0WgWR0Cn1UgWBSUDdX2UKGgGaAloD0MIJ92WyEUNckCUhpRSlGgVS+toFkdAp9WWnIhhY3V9lChoBmgJaA9DCFw4EJLFmnNAlIaUUpRoFUvKaBZHQKfVvJnxri51fZQoaAZoCWgPQwj0N6EQQZdzQJSGlFKUaBVNUQJoFkdAp9YMBXCCSXV9lChoBmgJaA9DCGzLgLOUBnJAlIaUUpRoFUvTaBZHQKfWUSOBDoh1fZQoaAZoCWgPQwhYWHA/oG9yQJSGlFKUaBVNCAJoFkdAp9aZBC2MKnV9lChoBmgJaA9DCOf9f5xwyHBAlIaUUpRoFUvlaBZHQKfWp2YfGMp1fZQoaAZoCWgPQwhu93KfXJhxQJSGlFKUaBVL02gWR0Cn1rDoyKvWdX2UKGgGaAloD0MIya1JtyWncECUhpRSlGgVS8JoFkdAp9buHck+o3V9lChoBmgJaA9DCP4sliI5/HBAlIaUUpRoFUvHaBZHQKfW6pG4I8h1fZQoaAZoCWgPQwjncRjMH5NyQJSGlFKUaBVL3WgWR0Cn1xeo1k1/dX2UKGgGaAloD0MIJxQi4BCEcUCUhpRSlGgVS99oFkdAp9cVT987ZHV9lChoBmgJaA9DCJlLqrYbw3BAlIaUUpRoFUvYaBZHQKfXVSUC7sh1fZQoaAZoCWgPQwiuDoC46zVyQJSGlFKUaBVL0WgWR0Cn15Dslb/wdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 616,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8a618036ccfba1a0e95c291529cb8d7fdb1280a0c9d39cc49f4ea886703cb6e
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55c2f7de8b4276c22e36dd478b44e4ab3515b42aff57cc2c670395556afd1c48
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b53b64178255c3b9763bd5d8f35da75ee4686a8657957e53241df21c64d26aa8
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52ebb13fad4937237e424a6fabf0001732af9da226deab13c414b0571b8ce276
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f8d864d10db4e6d9564f5c7794ee2a7baa2f71e4b96c4b1c7a6329cb4b722759
3
- size 196152
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c38bae49c509e55c66dbf0d3a81ec0088769bf9f63cfdbf8402d44540e4eeb6
3
+ size 193209
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 286.95220738122464, "std_reward": 19.305724947134284, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T10:26:59.860137"}
 
1
+ {"mean_reward": 295.51801385350115, "std_reward": 15.603574674030106, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T11:26:54.609252"}