File size: 5,781 Bytes
9297f93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# Shortened LLM Model Card
Shortened LLM is a depth-pruned version of large language models for efficient text generation.
- **Developed by:** [Nota AI](https://www.nota.ai/)
- **License:** Non-commercial license
- **Repository:** https://github.com/Nota-NetsPresso/shortened-llm
- **Paper:** https://arxiv.org/abs/2402.02834
## Compression Method
* After identifying unimportant Transformer blocks, we perform **one-shot pruning**.
* In retraining pruned models for quality recovery, **continued pretraining (CPT)** on a large corpus markedly outperforms LoRA-based tuning, particularly at severe pruning ratios.
## Models from Aggressive Pruning & CPT Retraining (arXiv-v2):
| Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
|:---:|:---:|:---:|:---:|
| Vicuna-v1.3-7B | 20% | PPL | [nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl) |
| Vicuna-v1.3-7B | 45% | PPL | [nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl) |
| Vicuna-v1.3-7B | 60% | PPL | [nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl) |
| Vicuna-v1.3-7B | 80% | PPL | [nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl) |
<details>
<summary>
Click to see the results:
</summary>
- EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st_llm-cpt_results.png" width="100%">
</details>
#### Experimental Setup for CPT of Pruned Vicuna-7B
* Dataset: [SlimPajama-627B](https://huggingface.co/datasets/cerebras/SlimPajama-627B)
* Training using 8 NVIDIA H100 GPUs.
* 5.5B parameters: 37B training tokens (for 6 days)
* 3.7B parameters: 74B tokens (for 8 days)
* 2.7B parameters: 150B tokens (for 12 days)
* 1.5B parameters: 271B tokens (for 11 days)
* AdamW optimizer with (β1, β2)=(0.9, 0.95); a learning rate of 0.0001; a weight decay of 0.1.
* Global batch size: 512 (micro-batch size of 2 × 32 gradient accumulation steps × 8 GPUs).
<details>
<summary>
Click to see the learning curve:
</summary>
**Zero-shot performance over the course of training for models from Vicuna-7B-v1.3 at different pruning ratios.** For each model size, the CPT duration was limited to a two-week period, but additional training could further improve the quality.
<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st_llm-cpt_learning-curve.png" width="100%">
</details>
## Models from Moderate Pruning & LoRA Retraining (arXiv-v1):
| Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
|:---:|:---:|:---:|:---:|
| LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) |
| LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) |
| Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) |
| Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) |
| Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) |
| Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |
<details>
<summary>
Click to see the results:
</summary>
- EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_zero-shot_scores.png" width="100%">
</details>
## License
- All rights related to this repository and the compressed models are reserved by Nota Inc.
- The intended use is strictly limited to research and non-commercial projects.
## Acknowledgments
- [Microsoft for Startups Founders Hub](https://www.microsoft.com/en-us/startups) and [Gwangju AICA](http://www.aica-gj.kr/main.php) for generously providing GPU resources.
- [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs!
- Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs!
## Citation
```bibtex
@article{kim2024shortened,
title={Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods},
author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
journal={arXiv preprint arXiv:2402.02834},
year={2024},
url={https://arxiv.org/abs/2402.02834}
}
```
```bibtex
@article{kim2024mefomo,
title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)},
year={2024},
url={https://openreview.net/forum?id=18VGxuOdpu}
}
``` |