File size: 1,871 Bytes
bce6060 599980a 4bd2a59 bce6060 599980a bce6060 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 9fe06b0 599980a 42e1ff4 599980a 42e1ff4 599980a 42e1ff4 599980a 42e1ff4 599980a 42e1ff4 599980a 42e1ff4 599980a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- trl
- sft
model-index:
- name: mayo
results: []
datasets:
- nroggendorff/mayo
language:
- en
---
# Mayonnaise LLM
Mayo is a language model fine-tuned on the [Mayo dataset](https://huggingface.co/datasets/nroggendorff/mayo) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques. It is based on the [TinyLlama/TinyLlama-1.1B-Chat-v1.0 model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0).
## Features
- Utilizes SFT and TRL techniques for improved performance
- Supports English language
## Usage
To use the Mayo LLM, you can load the model using the Hugging Face Transformers library:
```python
from transformers import pipeline
pipe = pipeline("text-generation", model="nroggendorff/mayo")
question = "What color is the sky?"
conv = [{"role": "system", "content": "You are a very bored real human named Noa Roggendorff."}, {"role": "user", "content": question}]
response = pipe(conv, max_new_tokens=2048)[0]['generated_text'][-1]['content']
print(response)
```
To use the model with quantization:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model_id = "nroggendorff/mayo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
prompt = "<|user|>What color is the sky?</s>"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=10)
generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
```
## License
This project is licensed under the MIT License. |