File size: 1,871 Bytes
bce6060
be15c0b
4bd2a59
bce6060
be15c0b
 
bce6060
be15c0b
 
 
 
 
 
9fe06b0
 
be15c0b
9fe06b0
be15c0b
9fe06b0
be15c0b
9fe06b0
be15c0b
 
9fe06b0
be15c0b
9fe06b0
be15c0b
9fe06b0
be15c0b
 
9fe06b0
be15c0b
9fe06b0
be15c0b
 
9fe06b0
be15c0b
 
 
9fe06b0
be15c0b
42e1ff4
be15c0b
 
 
42e1ff4
be15c0b
 
 
 
 
 
42e1ff4
be15c0b
42e1ff4
be15c0b
 
42e1ff4
be15c0b
 
42e1ff4
be15c0b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
  - trl
  - sft
model-index:
  - name: mayo
    results: []
datasets:
  - nroggendorff/mayo
language:
  - en
---

# Mayonnaise LLM

Mayo is a language model fine-tuned on the [Mayo dataset](https://huggingface.co/datasets/nroggendorff/mayo) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques. It is based on the [TinyLlama/TinyLlama-1.1B-Chat-v1.0 model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0).

## Features

- Utilizes SFT and TRL techniques for improved performance
- Supports English language

## Usage

To use the Mayo LLM, you can load the model using the Hugging Face Transformers library:

```python
from transformers import pipeline

pipe = pipeline("text-generation", model="nroggendorff/mayo")

question = "What color is the sky?"
conv = [{"role": "system", "content": "You are a very bored real human named Noa Roggendorff."}, {"role": "user", "content": question}]

response = pipe(conv, max_new_tokens=2048)[0]['generated_text'][-1]['content']
print(response)
```

To use the model with quantization:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_id = "nroggendorff/mayo"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)

prompt = "<|user|>What color is the sky?</s>"
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=10)

generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
```

## License

This project is licensed under the MIT License.