liamcripwell commited on
Commit
f9b15f3
·
verified ·
1 Parent(s): 590025b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -8
README.md CHANGED
@@ -5,12 +5,12 @@ language:
5
  ---
6
  # Structure Extraction Model by NuMind 🔥
7
 
8
- NuExtract is a fine-tuned version of [phi-3-mini](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct), on a private high-quality syntatic dataset for information extraction.
9
- To use the model, provide an input text (less than 2000 tokens) and a JSON schema describing the information you need to extract.
10
 
11
- Note: This model is purely extractive, so each information output by the model is present as it is in the text. You can also provide an example of output to help the model understand your task more precisely.
12
 
13
- try here: https://huggingface.co/spaces/numind/NuExtract
14
 
15
  We also provide a tiny(0.5B) and large(7B) version of this model: [NuExtract-tiny](https://huggingface.co/numind/NuExtract-tiny) and [NuExtract-large](https://huggingface.co/numind/NuExtract-large)
16
 
@@ -44,7 +44,7 @@ import json
44
  from transformers import AutoModelForCausalLM, AutoTokenizer
45
 
46
 
47
- def predict_NuExtract(model,tokenizer,text, schema,example = ["","",""]):
48
  schema = json.dumps(json.loads(schema), indent=4)
49
  input_llm = "<|input|>\n### Template:\n" + schema + "\n"
50
  for i in example:
@@ -52,13 +52,14 @@ def predict_NuExtract(model,tokenizer,text, schema,example = ["","",""]):
52
  input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
53
 
54
  input_llm += "### Text:\n"+text +"\n<|output|>\n"
55
- input_ids = tokenizer(input_llm, return_tensors="pt",truncation = True, max_length = 4000).to("cuda")
56
 
57
  output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
58
  return output.split("<|output|>")[1].split("<|end-output|>")[0]
59
 
60
 
61
- model = AutoModelForCausalLM.from_pretrained("numind/NuExtract", trust_remote_code=True)
 
62
  tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract", trust_remote_code=True)
63
 
64
  model.to("cuda")
@@ -90,7 +91,7 @@ schema = """{
90
  }
91
  }"""
92
 
93
- prediction = predict_NuExtract(model,tokenizer,text, schema,example = ["","",""])
94
  print(prediction)
95
 
96
  ```
 
5
  ---
6
  # Structure Extraction Model by NuMind 🔥
7
 
8
+ NuExtract is a version of [phi-3-mini](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct), fine-tuned on a private high-quality synthetic dataset for information extraction.
9
+ To use the model, provide an input text (less than 2000 tokens) and a JSON template describing the information you need to extract.
10
 
11
+ Note: This model is purely extractive, so all text output by the model is present as is in the original text. You can also provide an example of output formatting to help the model understand your task more precisely.
12
 
13
+ Try it here: https://huggingface.co/spaces/numind/NuExtract
14
 
15
  We also provide a tiny(0.5B) and large(7B) version of this model: [NuExtract-tiny](https://huggingface.co/numind/NuExtract-tiny) and [NuExtract-large](https://huggingface.co/numind/NuExtract-large)
16
 
 
44
  from transformers import AutoModelForCausalLM, AutoTokenizer
45
 
46
 
47
+ def predict_NuExtract(model, tokenizer, text, schema, example=["", "", ""]):
48
  schema = json.dumps(json.loads(schema), indent=4)
49
  input_llm = "<|input|>\n### Template:\n" + schema + "\n"
50
  for i in example:
 
52
  input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
53
 
54
  input_llm += "### Text:\n"+text +"\n<|output|>\n"
55
+ input_ids = tokenizer(input_llm, return_tensors="pt",truncation = True, max_length=4000).to("cuda")
56
 
57
  output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
58
  return output.split("<|output|>")[1].split("<|end-output|>")[0]
59
 
60
 
61
+ # We recommend using bf16 as it results in negligable performance loss
62
+ model = AutoModelForCausalLM.from_pretrained("numind/NuExtract", torch_dtype=torch.bfloat16, trust_remote_code=True)
63
  tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract", trust_remote_code=True)
64
 
65
  model.to("cuda")
 
91
  }
92
  }"""
93
 
94
+ prediction = predict_NuExtract(model, tokenizer, text, schema, example=["","",""])
95
  print(prediction)
96
 
97
  ```