C-RADIOv2-G / feature_normalizer.py
gheinrich's picture
Upload model (#1)
2d3bbc7 verified
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from collections import namedtuple
from typing import NamedTuple, Optional, Tuple
import torch
from torch import nn
def _run_kernel(x: torch.Tensor, mean: torch.Tensor, tx: torch.Tensor):
if x.ndim <= 3:
x = x - mean
x = x @ tx.T
elif x.ndim == 4:
x = x - mean.reshape(1, -1, 1, 1)
kernel = tx.reshape(*tx.shape, 1, 1)
x = torch.nn.functional.conv2d(x, weight=kernel, bias=None, stride=1, padding=0)
else:
raise ValueError(f'Unsupported input dimension: {x.ndim}, shape: {x.shape}')
return x
class FeatureNormalizer(nn.Module):
def __init__(self, embed_dim: int, dtype: torch.dtype = torch.float32):
super().__init__()
self.register_buffer('mean', torch.zeros(embed_dim, dtype=dtype))
self.register_buffer('tx', torch.eye(embed_dim, dtype=dtype))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = _run_kernel(x, self.mean, self.tx)
return x
class InterFeatState(NamedTuple):
y: torch.Tensor
alpha: torch.Tensor
class IntermediateFeatureNormalizerBase(nn.Module):
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
raise NotImplementedError()
class IntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
def __init__(self, num_intermediates: int, embed_dim: int, rot_per_layer: bool = False, dtype: torch.dtype = torch.float32):
super().__init__()
self.register_buffer('alphas', torch.ones(num_intermediates, dtype=dtype))
rot = torch.eye(embed_dim, dtype=dtype)
if rot_per_layer:
rot = rot.unsqueeze(0).repeat(num_intermediates, 1, 1)
self.register_buffer('rotation', rot.contiguous())
self.register_buffer('means', torch.zeros(num_intermediates, embed_dim, dtype=dtype))
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
if rot_index is None:
rot_index = index
if skip:
assert x.ndim == 3, f'Cannot use the `skip` parameter when the `x` tensor isn\'t 3-dimensional.'
prefix, x = x[:, :skip], x[:, skip:]
rotation = self._get_rotation(rot_index)
y = _run_kernel(x, self.means[index], rotation)
alpha = self.alphas[index]
if skip:
alpha = torch.cat([
torch.ones(skip, dtype=alpha.dtype, device=alpha.device),
alpha[None].expand(y.shape[1]),
]).reshape(1, -1, 1)
y = torch.cat([prefix, y], dim=1)
else:
if x.ndim == 3:
alpha = alpha.reshape(1, 1, 1).expand(1, y.shape[1], 1)
elif x.ndim == 4:
alpha = alpha.reshape(1, 1, 1, 1).expand(1, 1, *y.shape[2:])
else:
raise ValueError(f'Unsupported input dimension: {x.ndim}')
return InterFeatState(y, alpha)
def _get_rotation(self, rot_index: int) -> torch.Tensor:
if self.rotation.ndim == 2:
return self.rotation
return self.rotation[rot_index]
class NullIntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
instances = dict()
def __init__(self, dtype: torch.dtype, device: torch.device):
super().__init__()
self.register_buffer('alpha', torch.tensor(1, dtype=dtype, device=device))
@staticmethod
def get_instance(dtype: torch.dtype, device: torch.device):
instance = NullIntermediateFeatureNormalizer.instances.get((dtype, device), None)
if instance is None:
instance = NullIntermediateFeatureNormalizer(dtype, device)
NullIntermediateFeatureNormalizer.instances[(dtype, device)] = instance
return instance
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
return InterFeatState(x, self.alpha)