File size: 23,342 Bytes
a5f8592
921f508
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921f508
 
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921f508
a5f8592
 
 
 
 
 
 
 
921f508
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
---
license: cc-by-nc-4.0
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - google/paligemma-3b-mix-448
  - Qwen/Qwen2.5-0.5B-Instruct
base_model_relation: merge
language:
  - multilingual
tags:
  - eagle
  - VLM
---


# Eagle-2


[\[πŸ“‚ GitHub\]](https://github.com/NVlabs/EAGLE)   [\[πŸ“œ Eagle2 Tech Report\]](TODO)
[\[πŸ—¨οΈ Chat Demo\]](http://eagle-vlm.xyz/)  [\[πŸ€— HF Demo\]](TODO)  
## Introduction

We are thrilled to release our latest Eagle2 series Vision-Language Model. Open-source Vision-Language Models (VLMs) have made significant strides in narrowing the gap with proprietary models. However, critical details about data strategies and implementation are often missing, limiting reproducibility and innovation. In this project, we focus on VLM post-training from a data-centric perspective, sharing insights into building effective data strategies from scratch. By combining these strategies with robust training recipes and model design, we introduce Eagle 2, a family of performant VLMs. Our work aims to empower the open-source community to develop competitive VLMs with transparent processes.



In this repo, we are open-sourcing Eagle2-9B, which strikes the perfect balance between performance and inference speed. 









## Model Zoo
We provide the following models:

| model name         | LLM  | Vision  | Max Length| HF Link|
| ----------- | ------- |---------|-|-|
| Eagle2-1B | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) |  Siglip    | 16K| [πŸ€— link](https://huggingface.co/NVIDIA/Eagle2-1B)|
| Eagle2-2B | [Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) |  Siglip    | 16K| [πŸ€— link](https://huggingface.co/NVIDIA/Eagle2-2B)|
| Eagle2-9B | [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) |  Siglip+ConvNext    | 16K| [πŸ€— link](https://huggingface.co/NVIDIA/Eagle2-9B)|
| Eagle2-32B | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) |  Siglip+ConvNext    | 16K| [πŸ€— link](https://huggingface.co/NVIDIA/Eagle2-32B)|

## Benchmark Results
|          Benchmark           | LLaVa-One-Vision-0.5B | InternVL2-1B | InternVL2.5-1B |Qwen2-VL-2B| Eagle2-1B|
| :--------------------------: | :------------------: | :----------------: | :----------: |:----------: |:----------: |  
|    DocVQA<sub>test</sub>     |         70.0         |        81.7        |     84.8     |90.1|81.8|
|    ChartQA<sub>test</sub>    |          61.4         |        72.9        |     75.9     |73.0|77.0|
|    InfoVQA<sub>test</sub>    |          41.8           |        50.9        |     56.0     |65.5|54.8|
|    TextVQA<sub>val</sub>     |         -         |        70.0       |     72.0     |79.7|76.6|
|           OCRBench           |         565          |        754         |     785      |809|767|
|      MME<sub>sum</sub>       |        1438.0     |       1794.4      |    1950.5   |  1872.0| 1790.2|
|         RealWorldQA          |        55.6     |        50.3       |    57.5     |62.6|55.4|
|     AI2D<sub>test</sub>      |         57.1         |        64.1        |     69.3    | 74.7 |70.9|
|      MMMU<sub>val</sub>      |          31.4       |    36.7     | 40.9  |41.1|38.8|
| MMVet<sub>GPT-4-Turbo</sub>  |         32.2       |        32.7       |    48.8    | 49.5|40.9|             HallBench<sub>avg</sub>    |         27.9      |        34.0       |     39.0     |**41.7**|35.3
| MathVista<sub>testmini</sub> |         33.8         |        37.7        |     43.2     |43.0|45.3|
| MMstar |             37.7    |       45.7      |     50.1|48.0|48.5|



## Quick Start



We provide a [inference script](./demo.py) to help you quickly start using the model. We support different input types: 
- pure text input
- single image input
- multiple image input
- video input

### 0. Install the dependencies

```bash
pip install transformers==4.37.2
pip install flash-attn
```
**Note**: Latest version of transformers if not compatible with the model.

### 1. Prepare the Model worker

<details>
  <summary>Click to expand</summary>

```python

"""
A model worker executes the model.
Copied and modified from https://github.com/OpenGVLab/InternVL/blob/main/streamlit_demo/model_worker.py
"""
# Importing torch before transformers can cause `segmentation fault`
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer, AutoConfig

import argparse
import base64
import json
import os
import decord
import threading
import time
from io import BytesIO
from threading import Thread
import math
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
import numpy as np


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)


def get_seq_frames(total_num_frames, desired_num_frames=-1, stride=-1):
    """
    Calculate the indices of frames to extract from a video.

    Parameters:
    total_num_frames (int): Total number of frames in the video.
    desired_num_frames (int): Desired number of frames to extract.

    Returns:
    list: List of indices of frames to extract.
    """
    
    assert desired_num_frames > 0 or stride > 0 and not (desired_num_frames > 0 and stride > 0)

    if stride > 0:
        return list(range(0, total_num_frames, stride))
    
    # Calculate the size of each segment from which a frame will be extracted
    seg_size = float(total_num_frames - 1) / desired_num_frames

    seq = []
    for i in range(desired_num_frames):
        # Calculate the start and end indices of each segment
        start = int(np.round(seg_size * i))
        end = int(np.round(seg_size * (i + 1)))

        # Append the middle index of the segment to the list
        seq.append((start + end) // 2)

    return seq

def build_video_prompt(meta_list, num_frames, time_position=False):
    # if time_position is True, the frame_timestamp is used.
    # 1. pass time_position, 2. use env TIME_POSITION
    time_position = os.environ.get("TIME_POSITION", time_position)
    prefix = f"This is a video:\n"
    for i in range(num_frames):
        if time_position:
            frame_txt = f"Frame {i+1} sampled at {meta_list[i]:.2f} seconds: <image>\n"
        else:
            frame_txt = f"Frame {i+1}: <image>\n"
        prefix += frame_txt
    return prefix

def load_video(video_path, num_frames=64, frame_cache_root=None):
    if isinstance(video_path, str):
        video = decord.VideoReader(video_path)
    elif isinstance(video_path, dict):
        assert False, 'we not support vidoe: "video_path" as input'
    fps = video.get_avg_fps()
    sampled_frames = get_seq_frames(len(video), num_frames)
    samepld_timestamps = [i / fps for i in sampled_frames]
    frames = video.get_batch(sampled_frames).asnumpy()
    images = [Image.fromarray(frame) for frame in frames]
    
    return images, build_video_prompt(samepld_timestamps, len(images), time_position=True)

def load_image(image):
    if isinstance(image, str) and os.path.exists(image):
        return Image.open(image)
    elif isinstance(image, dict):
        if 'disk_path' in image:
            return Image.open(image['disk_path'])
        elif 'base64' in image:
            return Image.open(BytesIO(base64.b64decode(image['base64'])))
        elif 'url' in image:
            response = requests.get(image['url'])
            return Image.open(BytesIO(response.content))
        elif 'bytes' in image:
            return Image.open(BytesIO(image['bytes']))
        else:
            raise ValueError(f'Invalid image: {image}')
    else:
        raise ValueError(f'Invalid image: {image}')

def build_transform(input_size, norm_type='imagenet'):
    if norm_type == 'imagenet':
        MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    elif norm_type == 'siglip':
        MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
        
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    """
    previous version mainly foucs on ratio.
    We also consider area ratio here.
    """
    best_factor = float('-inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
        """
        new area > 60% of original image area is enough.
        """
        factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
                                     min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
        
        if factor_based_on_area_n_ratio > best_factor:
            best_factor = factor_based_on_area_n_ratio
            best_ratio = ratio
        
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def split_model(model_path, device):

    device_map = {}
    world_size = torch.cuda.device_count()
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
    num_layers = config.llm_config.num_hidden_layers

    print('world_size', world_size)
    num_layers_per_gpu_ = math.floor(num_layers / (world_size - 1))
    num_layers_per_gpu = [num_layers_per_gpu_] * world_size
    num_layers_per_gpu[device] = num_layers - num_layers_per_gpu_ * (world_size-1)
    print(num_layers_per_gpu)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = device
    device_map['mlp1'] = device
    device_map['language_model.model.tok_embeddings'] = device
    device_map['language_model.model.embed_tokens'] = device
    device_map['language_model.output'] = device
    device_map['language_model.model.norm'] = device
    device_map['language_model.lm_head'] = device
    device_map['language_model.model.rotary_emb'] = device
    device_map[f'language_model.model.layers.{num_layers - 1}'] = device
    return device_map

class ModelWorker:
    def __init__(self, model_path, model_name,
                 load_8bit, device):

        if model_path.endswith('/'):
            model_path = model_path[:-1]
        if model_name is None:
            model_paths = model_path.split('/')
            if model_paths[-1].startswith('checkpoint-'):
                self.model_name = model_paths[-2] + '_' + model_paths[-1]
            else:
                self.model_name = model_paths[-1]
        else:
            self.model_name = model_name

        print(f'Loading the model {self.model_name}')

        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
        tokens_to_keep = ['<box>', '</box>', '<ref>', '</ref>']
        tokenizer.additional_special_tokens = [item for item in tokenizer.additional_special_tokens if item not in tokens_to_keep]
        self.tokenizer = tokenizer
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
        model_type = config.vision_config.model_type
        self.device = torch.cuda.current_device()
        if model_type == 'siglip_vision_model':
            self.norm_type = 'siglip'
        elif model_type == 'MOB':
            self.norm_type = 'siglip'
        else:
            self.norm_type = 'imagenet'

        if any(x in model_path.lower() for x in ['34b']):
            device_map = split_model(model_path, self.device)
        else:
            device_map = None
        
        if device_map is not None:    
            self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
                                               low_cpu_mem_usage=True,
                                               device_map=device_map, 
                                               trust_remote_code=True,
                                               load_in_8bit=load_8bit).eval()
        else:
            self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
                                               trust_remote_code=True,
                                               load_in_8bit=load_8bit).eval()  

        if not load_8bit and device_map is None:
            self.model = self.model.to(device)
        self.load_8bit = load_8bit
        
        self.model_path = model_path
        self.image_size = self.model.config.force_image_size
        self.context_len = tokenizer.model_max_length
        self.per_tile_len = 256

    def reload_model(self):
        del self.model
        torch.cuda.empty_cache()
        if self.device == 'auto':
            os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
            # This can make distributed deployment work properly
            self.model = AutoModel.from_pretrained(
                self.model_path,
                load_in_8bit=self.load_8bit,
                torch_dtype=torch.bfloat16,
                device_map=self.device_map,
                trust_remote_code=True).eval()
        else:
            self.model = AutoModel.from_pretrained(
                self.model_path,
                load_in_8bit=self.load_8bit,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True).eval()
        if not self.load_8bit and not self.device == 'auto':
            self.model = self.model.cuda()

    @torch.inference_mode()
    def generate(self, params):
        system_message = params['prompt'][0]['content']
        send_messages = params['prompt'][1:]
        max_input_tiles = params['max_input_tiles']
        temperature = params['temperature']
        top_p = params['top_p']
        max_new_tokens = params['max_new_tokens']
        repetition_penalty = params['repetition_penalty']
        video_frame_num = params.get('video_frame_num', 64)
        do_sample = True if temperature > 0.0 else False

        global_image_cnt = 0
        history, pil_images, max_input_tile_list = [], [], []
        for message in send_messages:
            if message['role'] == 'user':
                prefix = ''
                if 'image' in message:
                    for image_data in message['image']:
                        pil_images.append(load_image(image_data))
                        prefix = prefix + f'<image {global_image_cnt + 1}><image>\n'
                        global_image_cnt += 1
                        max_input_tile_list.append(max_input_tiles)
                if 'video' in message:
                    for video_data in message['video']:
                        video_frames, tmp_prefix = load_video(video_data, num_frames=video_frame_num)
                        pil_images.extend(video_frames)
                        prefix = prefix + tmp_prefix
                        global_image_cnt += len(video_frames)
                        max_input_tile_list.extend([1] * len(video_frames))
                content = prefix + message['content']
                history.append([content, ])
            else:
                history[-1].append(message['content'])
        question, history = history[-1][0], history[:-1]

        if global_image_cnt == 1:
            question = question.replace('<image 1><image>\n', '<image>\n')
            history = [[item[0].replace('<image 1><image>\n', '<image>\n'), item[1]] for item in history]


        try:
            assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.'
        except Exception as e:
            from IPython import embed; embed()
            exit()
            print(f'Error: {e}')
            print(f'max_input_tile_list: {max_input_tile_list}, pil_images: {pil_images}')
            # raise e

        old_system_message = self.model.system_message
        self.model.system_message = system_message
        
        transform = build_transform(input_size=self.image_size, norm_type=self.norm_type)
        if len(pil_images) > 0:
            max_input_tiles_limited_by_contect = params['max_input_tiles']
            while True:
                image_tiles = []
                for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images):
                    if self.model.config.dynamic_image_size:
                        tiles = dynamic_preprocess(
                            pil_image, image_size=self.image_size, max_num=min(current_max_input_tiles, max_input_tiles_limited_by_contect),
                            use_thumbnail=self.model.config.use_thumbnail)
                    else:
                        tiles = [pil_image]
                    image_tiles += tiles
                if (len(image_tiles) * self.per_tile_len < self.context_len):
                    break
                else:
                    max_input_tiles_limited_by_contect -= 2
                
                if max_input_tiles_limited_by_contect < 1:
                    break
                    
            pixel_values = [transform(item) for item in image_tiles]
            pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.bfloat16)
            print(f'Split images to {pixel_values.shape}')
        else:
            pixel_values = None

        generation_config = dict(
            num_beams=1,
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            max_length=self.context_len,
            top_p=top_p,
        )

        response = self.model.chat(
            tokenizer=self.tokenizer,
            pixel_values=pixel_values,
            question=question,
            history=history,
            return_history=False,
            generation_config=generation_config,
        )
        self.model.system_message = old_system_message
        return {'text': response, 'error_code': 0}





if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model-path', type=str, default='NVIDIA/Eagle-2-1B')
    parser.add_argument('--model-name', type=str, default='Eagle-2-1B')
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--load-8bit', action='store_true')
    args = parser.parse_args()
    print(f'args: {args}')

    worker = ModelWorker(
                         args.model_path,
                         args.model_name,
                         args.load_8bit,
                         args.device)
```
</details>


### 2. Prepare the Prompt

- Single image input
```python
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe this image in details.', 
            'image':[
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'}
            ],
        }
    ]
```

- Multiple image input
```python
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe these two images in details.', 
            'image':[
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'},
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'}
            ],
        }
    ]
```

- Video input
```python
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe this video in details.', 
            'video':[
                'path/to/your/video.mp4'
            ],
        }
    ]
```

### 3. Generate the response    
```python
params = {
    'prompt': prompt,
    'max_input_tiles': 24,
    'temperature': 0.7,
    'top_p': 1.0,
    'max_new_tokens': 4096,
    'repetition_penalty': 1.0,
    }
worker.generate(params)
```

## TODO
- [ ] Support vLLM Inference
- [ ] Provide AWQ Quantization Weights
- [ ] Provide fine-tuning scripts


## License/Terms of Use
- The code is released under the Apache 2.0 license as found in the [LICENSE](https://huggingface.co/NVEagle/Eagle-X5-13B-Chat/blob/main/LICENSE) file.
- The pretrained model weights are released under the [Creative Commons Attribution: Non-Commercial 4.0 International](https://spdx.org/licenses/CC-BY-NC-4.0) <br>
- The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
  - Model License of Qwen2.5-7B-Instruct: [Apache-2.0](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE)
  - Model License of PaliGemma: [Gemma license](https://ai.google.dev/gemma/terms)



## Citation

## Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.    

Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).