File size: 11,067 Bytes
a5f8592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import torch, os
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .siglip_vision_tower import SiglipVisionTower
# from .hr_clip_encoder import HRCLIPVisionTower
# from .eva_vit import EVAVITVisionTower
# from .SAM.modeling_sam import SAMVisionTower
# from .pix2struct_large import Pix2StructLargeVisionTower
import torch.nn.functional as F
from torch.nn.init import trunc_normal_
from copy import deepcopy
import random
import math
class MultiBackboneChannelConcatenationVisionTower(nn.Module):
def __init__(self,
vision_tower,
args,
grid_size=32,
convnext_img_size=1024,
normalize_type=None, raw_config=None):
super().__init__()
self.is_loaded = False
self.grid_size = grid_size
self.num_tokens = self.grid_size ** 2
self.normalize_type = args.normalize_type
self.moe_version_type = args.moe_version_type
self.raw_config = raw_config
print("moe_version_type: ", self.moe_version_type)
assert self.moe_version_type in [None, 'all_tiling', 'seq_concat', 'feat_concat', 'convnext_512_siglip_448'], f"Unknown self.moe_version_type: {self.moe_version_type}"
vision_tower_name_list = vision_tower.split(";")
self.input_image_size = 1024
self.convnext_img_size = convnext_img_size
self.load_vision_towers(vision_tower_name_list, args)
def load_vision_towers(self, vision_tower_name_list, args):
self.vision_towers = nn.ModuleList()
freeze_backbone_list = args.freeze_backbones # note this is a str
if freeze_backbone_list is not None and len(freeze_backbone_list) > 0:
print("The frozen backbones: ", freeze_backbone_list)
else:
# make it a blank str
freeze_backbone_list = ""
for name in vision_tower_name_list:
## ConvNeXt
if name == 'convnext-1024':
convnext_args = deepcopy(args)
convnext_args.freeze_vision = False
if 'convnext-1024' in freeze_backbone_list:
convnext_args.freeze_vision = True
from .convnext_encoder import ConvNextVisionTower
convnext_args.input_image_size = self.convnext_img_size
convnext_vision_tower = args.vision_tower_convnext_path
convnext_vision_tower = ConvNextVisionTower(convnext_vision_tower,
convnext_args, delay_load=args.delay_load, normalize_type=self.normalize_type)
convnext_vision_tower.load_model()
self.vision_towers.append(convnext_vision_tower)
## PaliSigLIP
elif name == 'palisiglip':
palisiglip_args = deepcopy(args)
palisiglip_args.input_image_size = 448
palisiglip_args.freeze_vision = False
if 'palisiglip' in freeze_backbone_list:
palisiglip_args.freeze_vision = True
palisiglip_vision_tower = SiglipVisionTower(args.vision_tower_siglip_path, palisiglip_args, delay_load=args.delay_load, raw_config=self.raw_config)
palisiglip_vision_tower.load_model()
self.vision_towers.append(palisiglip_vision_tower)
# Set the image processor
self.image_processor = None
self.is_loaded = True
def load_model(self):
assert self.is_loaded, "All the vision encoders should be loaded during initialization!"
def forward(self, x):
# x is a Tensor if moe_version_type is None or 'all_tiling'
# else is a tuple(Tensor, Tensor)
if self.moe_version_type in [None, 'all_tiling']:
# The default pipeline
features = []
image_input_size = x.shape[2]
assert x.shape[2] == x.shape[3], f"Image should be a square but size ({x.shape[2]} x {x.shape[3]})"
for vision_tower in self.vision_towers:
if vision_tower.input_image_size != image_input_size:
resized_x = F.interpolate(x.float(),
size=(vision_tower.input_image_size, vision_tower.input_image_size),
mode='bilinear',
align_corners=True).to(dtype=x.dtype)
else:
resized_x = x
feature = vision_tower(resized_x)
if len(feature.shape) == 3: # b, n, c
b, n, c = feature.shape
if n == self.num_tokens:
features.append(feature)
continue
w = h = int(n**0.5)
feature = feature.transpose(1,2).reshape(b, c, h, w)
else:
b, c, h, w = feature.shape
if w != self.grid_size:
feature = F.interpolate(feature.float(), size=(self.grid_size, self.grid_size), mode='bilinear', align_corners=True).to(dtype=x.dtype)
features.append(feature.flatten(2,3).transpose(1,2))
features = torch.cat(features, dim=-1)
elif self.moe_version_type == 'convnext_512_siglip_448':
features = {}
image_input_size = x.shape[2]
assert x.shape[2] == x.shape[3], f"Image should be a square but size ({x.shape[2]} x {x.shape[3]})"
for vision_tower in self.vision_towers:
if vision_tower.input_image_size != image_input_size:
resized_x = F.interpolate(x.float(),
size=(vision_tower.input_image_size, vision_tower.input_image_size),
mode='bilinear',
align_corners=True).to(dtype=x.dtype)
else:
resized_x = x
feature = vision_tower(resized_x)
# if len(feature.shape) == 3: # b, n, c
# b, n, c = feature.shape
# if n == self.num_tokens:
# features.append(feature)
# continue
# w = h = int(n**0.5)
# feature = feature.transpose(1,2).reshape(b, c, h, w)
# else:
# b, c, h, w = feature.shape
features[vision_tower.name] = feature
else:
assert isinstance(x, dict), "x is expected to be a dict but {}".format(type(x))
pixel_values = x['pixel_values']
num_patches = x['num_patches'] # num patch of paddings token in texts
# calculated the real image patches
if self.moe_version_type == 'seq_concat':
image_in_num_patches = [i-1 for i in num_patches]
else:
image_in_num_patches = [i for i in num_patches]
assert sum(image_in_num_patches) == pixel_values.size(0), "sum(image_in_num_patches) ({}) != pixel_values.size(0) ({})".format(sum(image_in_num_patches), pixel_values.size(0))
# find the thubnail image id
thumbnail_image_id = torch.cumsum(torch.tensor(image_in_num_patches).to(pixel_values.device), 0) - 1
image_no_tiling = pixel_values[thumbnail_image_id]
# By default, we use the 1st vision_tower for x, others for x_nt
features = []
for layer_id, vision_tower in enumerate(self.vision_towers):
if layer_id == 0:
x = pixel_values
else:
x = image_no_tiling
if vision_tower.input_image_size != self.input_image_size:
resized_x = F.interpolate(x.float(),
size=(vision_tower.input_image_size, vision_tower.input_image_size),
mode='bilinear',
align_corners=True).to(dtype=x.dtype)
else:
resized_x = x
feature = vision_tower(resized_x)
if len(feature.shape) == 3: # b, n, c
b, n, c = feature.shape
if n == self.num_tokens:
features.append(feature)
continue
w = h = int(n**0.5)
feature = feature.transpose(1,2).reshape(b, c, h, w)
else:
b, c, h, w = feature.shape
if w != self.grid_size:
feature = F.interpolate(feature.float(), size=(self.grid_size, self.grid_size), mode='bilinear', align_corners=True).to(dtype=x.dtype)
features.append(feature.flatten(2,3).transpose(1,2))
clip_embeds = features[0]
if len(features) <= 1:
no_tiling_embeds = None
else:
no_tiling_embeds = torch.cat(features[1:], dim=-1)
if self.moe_version_type == 'feat_concat':
# concat thumbnail images features together
clip_thumbnail_embeds = clip_embeds[thumbnail_image_id]
if no_tiling_embeds is not None:
no_tiling_embeds = torch.cat([clip_thumbnail_embeds, no_tiling_embeds], dim=-1)
else:
no_tiling_embeds = clip_thumbnail_embeds
# extra patch featureas
clip_embeds_mask = ~torch.isin(torch.arange(clip_embeds.shape[0]).to(clip_embeds.device), thumbnail_image_id)
clip_embeds = clip_embeds[clip_embeds_mask]
features = {
'clip_embeds': clip_embeds,
'no_tiling_embeds': no_tiling_embeds,
'num_patches': num_patches
}
# features is a Tensor if not clip_tiling_only
return features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return next(self.clip_vision_tower.parameters()).dtype
@property
def device(self):
return next(self.clip_vision_tower.parameters()).device
@property
def config(self):
assert NotImplementedError
pass
@property
def hidden_size(self):
if self.moe_version_type == 'convnext_512_siglip_448':
res = {}
for vision_tower in self.vision_towers:
res[vision_tower.name] = vision_tower.hidden_size
return res
else:
return sum([_.hidden_size for _ in self.vision_towers])
@property
def num_patches(self):
return self.num_tokens
|