File size: 9,608 Bytes
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch, os
import torch.nn as nn
from timm import create_model
from transformers import CLIPImageProcessor
from .convnext import convnext_xxlarge
from torch.utils.checkpoint import checkpoint
import torch
from torchvision import transforms as T
from PIL import Image



cfg={
    "crop_size": 256,
    "do_center_crop": True,
    "do_normalize": True,
    "do_resize": True,
    "feature_extractor_type": "CLIPFeatureExtractor",
    "image_mean": [
        0.48145466,
        0.4578275,
        0.40821073
    ],
    "image_std": [
        0.26862954,
        0.26130258,
        0.27577711
    ],
    "resample": 3,
    "size": 256
}



MEAN_SLIP = [0.5, 0.5, 0.5]
STD_SLIP = [0.5, 0.5, 0.5]

MEAN_CLIP = [0.48145466, 0.4578275, 0.40821073]
STD_CLIP = [0.26862954, 0.26130258, 0.27577711]


a = [s_slip / s_clip for s_slip, s_clip in zip(STD_SLIP, STD_CLIP)]
b = [(m_slip - m_clip) / s_clip for m_slip, m_clip, s_clip in zip(MEAN_SLIP, MEAN_CLIP, STD_CLIP)]


class SlipToClipTransform:
    def __init__(self, a, b):
        self.a = torch.tensor(a).view(-1, 1, 1)
        self.b = torch.tensor(b).view(-1, 1, 1)
    
    def __call__(self, x_slip):
        return x_slip * self.a.to(x_slip.device) + self.b.to(x_slip.device)
slip_to_clip = SlipToClipTransform(a, b)

class ConvNextVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False, normalize_type=None):
        super().__init__()

        self.is_loaded = False
        self.freeze_vision=args.freeze_vision
        self.input_image_size=args.input_image_size
        self.vision_tower_name = vision_tower
        self.name = 'convnext'
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
        self.pre_norm = normalize_type

        print('pre_norm: ', self.pre_norm)
        self.delay_load = delay_load
        self.load_model()

    def load_model(self):
        if 'xxlarge' in self.vision_tower_name:
            if self.delay_load:
                self.vision_tower = convnext_xxlarge(pretrained=False)
            else:
                self.vision_tower = convnext_xxlarge(self.vision_tower_name)
            setattr(self.vision_tower, 'hidden_size', 3072)
        elif os.path.exists(self.vision_tower_name):
            self.vision_tower = torch.load(self.vision_tower_name)
        else:
            assert False, 'Not implemented'


        self.vision_tower = self.vision_tower.to(torch.bfloat16)

        if self.freeze_vision:
            self.vision_tower.requires_grad_(False)

        # if self.vision_tower.grad_checkpointing:
        for s in self.vision_tower.stages:
            s.grad_checkpointing = True

        self.is_loaded = True

    def feature_select(self, image_forward_outs):

        if self.select_layer>100:
            image_features = image_forward_outs[-4:]
        else:
            image_features = image_forward_outs[-1]
        return image_features

    def forward_features(self, x):
        x = self.vision_tower.stem(x)
        image_forward_out=[]
        for blk in self.vision_tower.stages:
            x = blk(x)
            b,c,h,w=x.shape
            image_forward_out.append(x.view(b,c,-1).transpose(1,2))
        return image_forward_out

    def forward(self, images):
        if self.freeze_vision:
            with torch.no_grad():
                image_features = self._forward_images(images)
        else:
            image_features = self._forward_images(images)

        return image_features

    def _forward_images(self, images):
        
        if type(images) is list:
            image_features = []
            for image in images:
                if self.pre_norm == 'siglip':
                    dtype = image.dtype
                    image = slip_to_clip(image.to(torch.float32)).to(dtype)
                image_forward_out = self.forward_features(image.to(device=self.device, dtype=self.dtype).unsqueeze(0))
                image_feature = self.feature_select(image_forward_out)
                image_features.append(image_feature)
        else:
            if self.pre_norm == 'siglip':
                dtype = images.dtype
                images = slip_to_clip(images.to(torch.float32)).to(dtype)
            image_forward_outs = self.forward_features(images.to(device=self.device, dtype=self.dtype))
            image_features = self.feature_select(image_forward_outs)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return next(self.vision_tower.parameters()).dtype

    @property
    def device(self):
        return next(self.vision_tower.parameters()).device

    @property
    def config(self):
        assert  NotImplementedError
        pass

    @property
    def num_attention_heads(self):
        # as constant
        return 16
    @property
    def num_layers(self):
        # as constant
        return 4
    @property
    def hidden_size(self):
        return self.vision_tower.hidden_size

    @property
    def num_patches(self):
        return (self.input_image_size // self.patch_embed.patch_size[0]) ** 2


class ConvNextFPNVisionTower(nn.Module):
    def __init__(self, 
                 vision_tower, 
                 args, 
                 fpn_target_level=1,
                 fpn_layer_idx=[1,2,3],
                 fpn_input_dim=[768,1536,3072],
                 delay_load=False):
        
        super().__init__()

        self.is_loaded = False
        self.vision_tower_name = vision_tower.replace('-fpn', 'fpn')
        self.freeze_vision = getattr(args, "frozen_backbone", True)
        # self.input_image_size = getattr(args, "vision_tower_input_size", 1024) 
        self.input_image_size = 1024  # hardcode
        self.select_layer = args.mm_vision_select_layer # no effect
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        self.need_fpn = True
        self.fpn_layer_idx = fpn_layer_idx # [1, 2, 3] # x8, x16, x32
        self.fpn_input_dim = [768, 1536, 3072]
        self.delay_load = delay_load
        self.load_model()

    def load_model(self):
        if self.is_loaded:
            return
        
        self.image_processor = CLIPImageProcessor(**cfg)
        if 'xxlarge' in self.vision_tower_name:
            self.vision_tower = convnext_xxlarge(self.vision_tower_name)
            setattr(self.vision_tower, 'hidden_size', self.fpn_input_dim)
            # setattr(self.vision_tower, 'hidden_size', 3072)
        else:
            self.vision_tower = convnext_large_mlp(self.vision_tower_name)
            setattr(self.vision_tower, 'hidden_size', 1536)
        if self.freeze_vision:
            self.vision_tower.requires_grad_(False)

        # if self.vision_tower.grad_checkpointing:
        for s in self.vision_tower.stages:
            s.grad_checkpointing = True

        if self.input_image_size is not None:
            self.image_processor.size=self.input_image_size
            self.image_processor.crop_size={
                'height':self.input_image_size,
                'width': self.input_image_size
            }

        self.is_loaded = True

    @torch.no_grad()
    def forward_features(self, x):
        x = self.vision_tower.stem(x)
        image_forward_out=[]
        for blk in self.vision_tower.stages:
            x = blk(x)
            image_forward_out.append(x)
        return image_forward_out

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.forward_features(image.to(device=self.device, dtype=self.dtype).unsqueeze(0))
                image_features.append(image_feature)
        else:
            image_features = self.forward_features(images.to(device=self.device, dtype=self.dtype))
            image_features = [image_features[idx] for idx in self.fpn_layer_idx]

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return next(self.vision_tower.parameters()).dtype

    @property
    def device(self):
        return next(self.vision_tower.parameters()).device

    @property
    def config(self):
        assert  NotImplementedError
        pass

    @property
    def num_attention_heads(self):
        # as constant
        return 16
    @property
    def num_layers(self):
        # as constant
        return 4
    @property
    def hidden_size(self):
        return self.vision_tower.hidden_size

    @property
    def num_patches(self):
        return (cfg['image_size'] // self.patch_embed.patch_size[0]) ** 2

if __name__ == '__main__':
    COMBINED_STD = [s_slip / s_clip for s_slip, s_clip in zip(STD_SigLIP, STD_CLIP)]
    COMBINED_MEAN = [(m_slip - m_clip) / s_clip for m_slip, m_clip, s_clip in zip(MEAN_SigLIP, MEAN_CLIP, STD_CLIP)]

    # 定义合并的归一化变换
    combined_normalize = T.Normalize(mean=COMBINED_MEAN, std=COMBINED_STD)
    x = torch.randn(1, 3, 256, 256).cuda()
    a = normalize_clip(x).to(torch.bfloat16)
    b = normalize_siglip(x).to(torch.bfloat16)
    c = denormalize_siglip(b.to(torch.float32))
    c2 = normalize_clip(c).to(torch.bfloat16)
    c3 = combined_normalize(b)
    print((c-x).abs().max())
    print((c2-a).abs().max())
    print((c3-a).abs().max())
    from IPython import embed
    embed()
    exit()