|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Siglip model configuration""" |
|
|
|
import os |
|
from typing import Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json", |
|
} |
|
|
|
|
|
class SiglipTextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a |
|
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip |
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`SiglipModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 64): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
pad_token_id (`int`, *optional*, defaults to 1): |
|
The id of the padding token in the vocabulary. |
|
bos_token_id (`int`, *optional*, defaults to 49406): |
|
The id of the beginning-of-sequence token in the vocabulary. |
|
eos_token_id (`int`, *optional*, defaults to 49407): |
|
The id of the end-of-sequence token in the vocabulary. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import SiglipTextConfig, SiglipTextModel |
|
|
|
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration |
|
>>> configuration = SiglipTextConfig() |
|
|
|
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration |
|
>>> model = SiglipTextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "siglip_text_model" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
max_position_embeddings=64, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
|
|
|
|
pad_token_id=1, |
|
bos_token_id=49406, |
|
eos_token_id=49407, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.max_position_embeddings = max_position_embeddings |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.attention_dropout = attention_dropout |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "siglip": |
|
config_dict = config_dict["text_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class SiglipVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a |
|
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip |
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of channels in the input images. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 16): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import SiglipVisionConfig, SiglipVisionModel |
|
|
|
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration |
|
>>> configuration = SiglipVisionConfig() |
|
|
|
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration |
|
>>> model = SiglipVisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "siglip_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=16, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "siglip": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class SiglipConfig(PretrainedConfig): |
|
r""" |
|
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to |
|
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip |
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`SiglipTextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`SiglipVisionConfig`]. |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import SiglipConfig, SiglipModel |
|
|
|
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration |
|
>>> configuration = SiglipConfig() |
|
|
|
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration |
|
>>> model = SiglipModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
|
|
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig |
|
>>> from transformers import SiglipTextConfig, SiglipVisionConfig |
|
|
|
>>> # Initializing a SiglipText and SiglipVision configuration |
|
>>> config_text = SiglipTextConfig() |
|
>>> config_vision = SiglipVisionConfig() |
|
|
|
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision) |
|
```""" |
|
|
|
model_type = "siglip" |
|
|
|
def __init__(self, text_config=None, vision_config=None, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.") |
|
|
|
self.text_config = SiglipTextConfig(**text_config) |
|
self.vision_config = SiglipVisionConfig(**vision_config) |
|
|
|
self.initializer_factor = 1.0 |
|
|
|
@classmethod |
|
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs): |
|
r""" |
|
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision |
|
model configuration. |
|
|
|
Returns: |
|
[`SiglipConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) |
|
|