zihanliu commited on
Commit
3b98162
·
verified ·
1 Parent(s): 396e122

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -13,10 +13,10 @@ tags:
13
 
14
 
15
  ## Model Details
16
- We introduce Llama3-ChatQA-1.5, which excels at conversational question answering (QA) and retrieval-augmented generation (RAG). Llama3-ChatQA-1.5 is developed using an improved training recipe from [ChatQA paper](https://arxiv.org/pdf/2401.10225v3), and it is built on top of [Llama-3 base model](https://huggingface.co/meta-llama/Meta-Llama-3-8B). Specifically, we incorporate more conversational QA data to enhance its tabular and arithmetic calculation capability. Llama3-ChatQA-1.5 has two variants: Llama3-ChatQA-1.5-8B and Llama3-ChatQA-1.5-70B. Both models were originally trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), we converted the checkpoints to Hugging Face format. **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
17
 
18
  ## Other Resources
19
- [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/pdf/2401.10225v3)
20
 
21
  ## Benchmark Results
22
  Results in [ChatRAG Bench](https://huggingface.co/datasets/nvidia/ChatRAG-Bench) are as follows:
 
13
 
14
 
15
  ## Model Details
16
+ We introduce Llama3-ChatQA-1.5, which excels at conversational question answering (QA) and retrieval-augmented generation (RAG). Llama3-ChatQA-1.5 is developed using an improved training recipe from [ChatQA paper](https://arxiv.org/pdf/2401.10225), and it is built on top of [Llama-3 base model](https://huggingface.co/meta-llama/Meta-Llama-3-8B). Specifically, we incorporate more conversational QA data to enhance its tabular and arithmetic calculation capability. Llama3-ChatQA-1.5 has two variants: Llama3-ChatQA-1.5-8B and Llama3-ChatQA-1.5-70B. Both models were originally trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), we converted the checkpoints to Hugging Face format. **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
17
 
18
  ## Other Resources
19
+ [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/pdf/2401.10225)
20
 
21
  ## Benchmark Results
22
  Results in [ChatRAG Bench](https://huggingface.co/datasets/nvidia/ChatRAG-Bench) are as follows: