File size: 2,563 Bytes
293b340
 
 
 
 
 
 
 
10924fa
293b340
 
 
 
 
 
 
 
10924fa
293b340
 
 
 
 
 
 
 
10924fa
293b340
10924fa
 
 
 
 
 
 
 
293b340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10924fa
293b340
 
 
 
10924fa
293b340
 
 
 
 
 
10924fa
293b340
 
 
 
10924fa
 
 
293b340
10924fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293b340
 
 
 
10924fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
#   LICENSE is in incl_licenses directory.

import glob
import os
import matplotlib
import torch
from torch.nn.utils import weight_norm

matplotlib.use("Agg")
import matplotlib.pylab as plt
from meldataset import MAX_WAV_VALUE
from scipy.io.wavfile import write


def plot_spectrogram(spectrogram):
    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)

    fig.canvas.draw()
    plt.close()

    return fig


def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(
        spectrogram,
        aspect="auto",
        origin="lower",
        interpolation="none",
        vmin=1e-6,
        vmax=clip_max,
    )
    plt.colorbar(im, ax=ax)

    fig.canvas.draw()
    plt.close()

    return fig


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)


def apply_weight_norm(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        weight_norm(m)


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


def load_checkpoint(filepath, device):
    assert os.path.isfile(filepath)
    print(f"Loading '{filepath}'")
    checkpoint_dict = torch.load(filepath, map_location=device)
    print("Complete.")
    return checkpoint_dict


def save_checkpoint(filepath, obj):
    print(f"Saving checkpoint to {filepath}")
    torch.save(obj, filepath)
    print("Complete.")


def scan_checkpoint(cp_dir, prefix, renamed_file=None):
    # Fallback to original scanning logic first
    pattern = os.path.join(cp_dir, prefix + "????????")
    cp_list = glob.glob(pattern)

    if len(cp_list) > 0:
        last_checkpoint_path = sorted(cp_list)[-1]
        print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
        return last_checkpoint_path

    # If no pattern-based checkpoints are found, check for renamed file
    if renamed_file:
        renamed_path = os.path.join(cp_dir, renamed_file)
        if os.path.isfile(renamed_path):
            print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
            return renamed_path

    return None


def save_audio(audio, path, sr):
    # wav: torch with 1d shape
    audio = audio * MAX_WAV_VALUE
    audio = audio.cpu().numpy().astype("int16")
    write(path, sr, audio)