Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,75 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-4.0
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: nemo
|
5 |
+
datasets:
|
6 |
+
- the_pile
|
7 |
+
tags:
|
8 |
+
- text generation
|
9 |
+
- pytorch
|
10 |
+
- causal-lm
|
11 |
license: cc-by-4.0
|
12 |
+
|
13 |
---
|
14 |
+
|
15 |
+
<style>
|
16 |
+
img {
|
17 |
+
display: inline;
|
18 |
+
}
|
19 |
+
</style>
|
20 |
+
|
21 |
+
| [![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)
|
22 |
+
| [![Model size](https://img.shields.io/badge/Params-1.3B-green)](#model-architecture)
|
23 |
+
| [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
|
24 |
+
|
25 |
+
|
26 |
+
# Megatron-GPT 1.3B
|
27 |
+
|
28 |
+
## Model Description
|
29 |
+
|
30 |
+
Megatron-GPT 1.3B is a transformer-based language model. GPT refers to a class of transformer decoder-only models similar to GPT-2 and 3 while 1.3B refers to the total trainable parameter count (1.3 Billion) [1, 2].
|
31 |
+
|
32 |
+
This model was trained with [NeMo Megatron](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html).
|
33 |
+
|
34 |
+
## Getting started
|
35 |
+
|
36 |
+
You will need to install NVIDIA Apex and NeMo.
|
37 |
+
|
38 |
+
```
|
39 |
+
git clone https://github.com/ericharper/apex.git
|
40 |
+
cd apex
|
41 |
+
git checkout nm_v1.11.0
|
42 |
+
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./
|
43 |
+
```
|
44 |
+
|
45 |
+
```
|
46 |
+
pip install nemo_toolkit['nlp']==1.11.0
|
47 |
+
```
|
48 |
+
|
49 |
+
Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed.
|
50 |
+
|
51 |
+
## Training Data
|
52 |
+
|
53 |
+
The model was trained on ["The Piles" dataset prepared by Eleuther.AI](https://pile.eleuther.ai/).
|
54 |
+
|
55 |
+
## Evaluation results
|
56 |
+
|
57 |
+
*Zero-shot performance.*
|
58 |
+
|
59 |
+
| ARC-Challenge | ARC-Easy | RACE-middle | RACE-high | Winogrande | RTE | BoolQA | HellaSwag | PiQA |
|
60 |
+
| ------------- | -------- | ----------- | --------- | ---------- | --- | ------ | --------- | ---- |
|
61 |
+
| 0.3012 | 0.4596 | 0.459 | 0.3811 | 0.5343 | 0.5451 | 0.5979 | 0.4442 | 0.6834 |
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
## References
|
66 |
+
|
67 |
+
[1] [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)
|
68 |
+
|
69 |
+
[2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf)
|
70 |
+
|
71 |
+
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
72 |
+
|
73 |
+
## Licence
|
74 |
+
|
75 |
+
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
|