nielsr HF staff commited on
Commit
c78b34e
·
1 Parent(s): c31a7ac

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ datasets:
7
+ - cityscapes
8
+ widget:
9
+ - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
10
+ example_title: House
11
+ - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
12
+ example_title: Castle
13
+ ---
14
+
15
+ # SegFormer (b1-sized) model fine-tuned on CityScapes
16
+
17
+ SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
18
+
19
+ Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
20
+
21
+ ## Model description
22
+
23
+ SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
24
+
25
+ ## Intended uses & limitations
26
+
27
+ You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
28
+
29
+ ### How to use
30
+
31
+ Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
32
+
33
+ ```python
34
+ from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
35
+ from PIL import Image
36
+ import requests
37
+
38
+ feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
39
+ model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
40
+
41
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
42
+ image = Image.open(requests.get(url, stream=True).raw)
43
+
44
+ inputs = feature_extractor(images=image, return_tensors="pt")
45
+ outputs = model(**inputs)
46
+ logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
47
+ ```
48
+
49
+ For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
50
+
51
+ ### BibTeX entry and citation info
52
+
53
+ ```bibtex
54
+ @article{DBLP:journals/corr/abs-2105-15203,
55
+ author = {Enze Xie and
56
+ Wenhai Wang and
57
+ Zhiding Yu and
58
+ Anima Anandkumar and
59
+ Jose M. Alvarez and
60
+ Ping Luo},
61
+ title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
62
+ Transformers},
63
+ journal = {CoRR},
64
+ volume = {abs/2105.15203},
65
+ year = {2021},
66
+ url = {https://arxiv.org/abs/2105.15203},
67
+ eprinttype = {arXiv},
68
+ eprint = {2105.15203},
69
+ timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
70
+ biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
71
+ bibsource = {dblp computer science bibliography, https://dblp.org}
72
+ }
73
+ ```