File size: 5,717 Bytes
6520a5c
62b023a
f753dee
62b023a
 
 
 
 
 
 
 
 
 
 
 
 
 
6520a5c
62b023a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6520a5c
e6cb78a
 
62b023a
 
 
 
 
 
 
 
 
 
 
 
e6cb78a
 
62b023a
 
e6cb78a
 
 
 
 
 
 
 
 
 
62b023a
e6cb78a
62b023a
 
 
e6cb78a
62b023a
e6cb78a
 
 
62b023a
e6cb78a
 
 
 
 
 
 
62b023a
 
e6cb78a
 
 
 
 
 
 
 
 
 
62b023a
 
 
 
 
 
 
 
 
e6cb78a
62b023a
e6cb78a
62b023a
e6cb78a
 
62b023a
e6cb78a
 
 
 
 
 
 
62b023a
e6cb78a
 
62b023a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
language:
- be
library_name: nemo
datasets:
- mozilla-foundation/common_voice_10_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- Transducer
- Conformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
model-index:
- name: stt_be_conformer_transducer_large
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: MCV_10_be
      type: mcv_asr
      config: clean
      split: test
      args:
        language: be
    metrics:
    - name: Test WER
      type: wer
      value: 3.8
---

# NVIDIA Conformer-Transducer Large (be-Bel)

<style>
img {
 display: inline;
}
</style>

| [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-be--Belarusian-lightgrey#model-badge)](#datasets)


This model transcribes speech in lower case Belarusian alphabet along with spaces and apostrophes.
It is an "large" versions of Conformer-Transducer (around 120M parameters) model.  
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.

## NVIDIA NeMo: Training

To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
'''
'''
(if it causes an error): 
pip install nemo_toolkit[all]
``` 

## How to Use this Model

The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

### Automatically instantiate the model

```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_be_conformer_transducer_large")
```

### Transcribing many audio files

```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py 
 pretrained_name="nvidia/stt_be_conformer_transducer_large" 
 audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```

### Input

This model accepts 16000 Hz Mono-channel Audio (wav files) as input.

### Output

This model provides transcribed speech as a string for a given audio sample.

## Model Architecture

Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). 

## Training

The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml).

The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).

### Datasets

All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several hundreds hours of Belarusian speech:

- Mozilla Common Voice (v10.0)


## Performance

Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. 

| Version | Tokenizer            | Vocabulary Size | MCV 10 Test | Train Dataset |
|---------|----------------------|-----------------|-------------|---------------|
| 1.12.0  | Google Sentencepiece | 1024            | 3.8         | MCV 10        |

## Limitations
Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.

## NVIDIA Riva: Deployment

[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. 
Additionally, Riva provides: 

* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours 
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization 
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support 

Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).  
Check out [Riva live demo](https://developer.nvidia.com/riva#demos). 

## References
[1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
[2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)

## Licence

License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.