File size: 9,665 Bytes
531f725 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c 531f725 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c dd59972 cea3e8c ef21856 cea3e8c ef21856 cea3e8c dd59972 cea3e8c ef21856 d98b19f ef21856 cea3e8c ef21856 cea3e8c dd59972 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 d98b19f ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 531f725 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 68b1a74 ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c 30f415a cea3e8c ba794e7 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 cea3e8c ef21856 dd59972 ef21856 cea3e8c ef21856 cea3e8c 1f241ed cea3e8c ba794e7 04a28cb cea3e8c 04a28cb cea3e8c ef21856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
---
language:
- de
library_name: nemo
datasets:
- multilingual_librispeech
- mozilla-foundation/common_voice_12_0
- VoxPopuli-(DE)
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- Transducer
- FastConformer
- CTC
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
model-index:
- name: stt_de_fastconformer_hybrid_large_pc
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common-voice-12-0
type: mozilla-foundation/common_voice_12_0
config: de
split: test
args:
language: de
metrics:
- name: Test WER
type: wer
value: 5.1
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech
type: facebook/multilingual_librispeech
config: german
split: test
args:
language: de
metrics:
- name: Test WER
type: wer
value: 3.87
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Vox Populi
type: facebook/voxpopuli
config: german
split: test
args:
language: de
metrics:
- name: Test WER
type: wer
value: 8.88
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common-voice-12-0
type: mozilla-foundation/common_voice_12_0
config: German P&C
split: test
args:
language: de
metrics:
- name: Test WER P&C
type: wer
value: 5.39
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech
type: facebook/multilingual_librispeech
config: German P&C
split: test
args:
language: de
metrics:
- name: Test WER P&C
type: wer
value: 11.1
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Vox Populi
type: facebook/voxpopuli
config: German P&C
split: test
args:
language: de
metrics:
- name: Test WER P&C
type: wer
value: 10.41
---
# NVIDIA FastConformer-Hybrid Large (de)
<style>
img {
display: inline;
}
</style>
| [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--Transducer_CTC-lightgrey#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-115M-lightgrey#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-de-lightgrey#model-badge)](#datasets)
This model transcribes speech in upper and lower case German alphabet along with spaces, periods, commas, and question marks.
It is a "large" version of FastConformer Transducer-CTC (around 115M parameters) model. This is a hybrid model trained on two losses: Transducer (default) and CTC.
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
## NVIDIA NeMo: Training
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
```
## How to Use this Model
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
### Automatically instantiate the model
```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(model_name="nvidia/stt_de_fastconformer_hybrid_large_pc")
```
### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```
### Transcribing many audio files
Using Transducer mode inference:
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_de_fastconformer_hybrid_large_pc"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```
Using CTC mode inference:
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_de_fastconformer_hybrid_large_pc"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
decoder_type="ctc"
```
### Input
This model accepts 16000 Hz Mono-channel Audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with joint Transducer and CTC decoder loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) and about Hybrid Transducer-CTC training here: [Hybrid Transducer-CTC](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#hybrid-transducer-ctc).
## Training
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_transducer_ctc_bpe.yaml).
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
### Datasets
All the models in this collection are trained on a composite dataset (NeMo PnC ASRSET) comprising of 2500 hours of German speech:
- MCV12 (800 hrs)
- MLS (1500 hrs)
- Voxpopuli (200 hrs)
## Performance
The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
The following tables summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
a) On data without Punctuation and Capitalization with Transducer decoder
| **Version** | **Tokenizer** | **Vocabulary Size** | **MCV12 DEV** | **MCV12 TEST** | **MLS DEV** | **MLS TEST** | **VOXPOPULI DEV** | **VOXPOPULI TEST** |
|:-----------:|:---------------------:|:-------------------:|:-------------:|:--------------:|:-----------:|:------------:|:-----------------:|:------------------:|
| 1.18.0 | SentencePiece Unigram | 1024 | 4.36 | 5.1 | 3.33 | 3.87 | 11.03 | 8.88 |
b) On data with Punctuation and Capitalization with Transducer decoder
| **Version** | **Tokenizer** | **Vocabulary Size** | **MCV12 DEV** | **MCV12 TEST** | **MLS DEV** | **MLS TEST** | **VOXPOPULI DEV** | **VOXPOPULI TEST** |
|:-----------:|:---------------------:|:-------------------:|:-------------:|:--------------:|:-----------:|:------------:|:-----------------:|:------------------:|
| 1.18.0 | SentencePiece Unigram | 1024 | 4.66 | 5.39 | 10.12 | 11.1 | 12.96 | 10.41 |
## Limitations
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. The model only outputs the punctuations: ```'.', ',', '?' ``` and hence might not do well in scenarios where other punctuations are also expected.
## NVIDIA Riva: Deployment
[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
Additionally, Riva provides:
* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
## References
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
[2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
## Licence
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license. |