kunaldhawan commited on
Commit
3973da3
·
1 Parent(s): 2c5a60e

Added the model card template

Browse files

Added the model card template from https://huggingface.co/nvidia/stt_en_conformer_transducer_xlarge

Files changed (1) hide show
  1. README.md +267 -0
README.md CHANGED
@@ -1,3 +1,270 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: nemo
5
+ datasets:
6
+ - librispeech_asr
7
+ - fisher_corpus
8
+ - Switchboard-1
9
+ - WSJ-0
10
+ - WSJ-1
11
+ - National-Singapore-Corpus-Part-1
12
+ - National-Singapore-Corpus-Part-6
13
+ - vctk
14
+ - VoxPopuli-(EN)
15
+ - Europarl-ASR-(EN)
16
+ - Multilingual-LibriSpeech-(2000-hours)
17
+ - mozilla-foundation/common_voice_8_0
18
+ - MLCommons/peoples_speech
19
+ thumbnail: null
20
+ tags:
21
+ - automatic-speech-recognition
22
+ - speech
23
+ - audio
24
+ - Transducer
25
+ - Conformer
26
+ - Transformer
27
+ - pytorch
28
+ - NeMo
29
+ - hf-asr-leaderboard
30
  license: cc-by-4.0
31
+ widget:
32
+ - example_title: Librispeech sample 1
33
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
34
+ - example_title: Librispeech sample 2
35
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
36
+ model-index:
37
+ - name: stt_en_conformer_transducer_xlarge
38
+ results:
39
+ - task:
40
+ name: Automatic Speech Recognition
41
+ type: automatic-speech-recognition
42
+ dataset:
43
+ name: LibriSpeech (clean)
44
+ type: librispeech_asr
45
+ config: clean
46
+ split: test
47
+ args:
48
+ language: en
49
+ metrics:
50
+ - name: Test WER
51
+ type: wer
52
+ value: 1.62
53
+ - task:
54
+ type: Automatic Speech Recognition
55
+ name: automatic-speech-recognition
56
+ dataset:
57
+ name: LibriSpeech (other)
58
+ type: librispeech_asr
59
+ config: other
60
+ split: test
61
+ args:
62
+ language: en
63
+ metrics:
64
+ - name: Test WER
65
+ type: wer
66
+ value: 3.01
67
+ - task:
68
+ type: Automatic Speech Recognition
69
+ name: automatic-speech-recognition
70
+ dataset:
71
+ name: Multilingual LibriSpeech
72
+ type: facebook/multilingual_librispeech
73
+ config: english
74
+ split: test
75
+ args:
76
+ language: en
77
+ metrics:
78
+ - name: Test WER
79
+ type: wer
80
+ value: 5.32
81
+ - task:
82
+ type: Automatic Speech Recognition
83
+ name: automatic-speech-recognition
84
+ dataset:
85
+ name: Mozilla Common Voice 7.0
86
+ type: mozilla-foundation/common_voice_7_0
87
+ config: en
88
+ split: test
89
+ args:
90
+ language: en
91
+ metrics:
92
+ - name: Test WER
93
+ type: wer
94
+ value: 5.13
95
+ - task:
96
+ type: Automatic Speech Recognition
97
+ name: automatic-speech-recognition
98
+ dataset:
99
+ name: Mozilla Common Voice 8.0
100
+ type: mozilla-foundation/common_voice_8_0
101
+ config: en
102
+ split: test
103
+ args:
104
+ language: en
105
+ metrics:
106
+ - name: Test WER
107
+ type: wer
108
+ value: 6.46
109
+ - task:
110
+ type: Automatic Speech Recognition
111
+ name: automatic-speech-recognition
112
+ dataset:
113
+ name: Wall Street Journal 92
114
+ type: wsj_0
115
+ args:
116
+ language: en
117
+ metrics:
118
+ - name: Test WER
119
+ type: wer
120
+ value: 1.17
121
+ - task:
122
+ type: Automatic Speech Recognition
123
+ name: automatic-speech-recognition
124
+ dataset:
125
+ name: Wall Street Journal 93
126
+ type: wsj_1
127
+ args:
128
+ language: en
129
+ metrics:
130
+ - name: Test WER
131
+ type: wer
132
+ value: 2.05
133
+ - task:
134
+ type: Automatic Speech Recognition
135
+ name: automatic-speech-recognition
136
+ dataset:
137
+ name: National Singapore Corpus
138
+ type: nsc_part_1
139
+ args:
140
+ language: en
141
+ metrics:
142
+ - name: Test WER
143
+ type: wer
144
+ value: 5.7
145
  ---
146
+
147
+ # NVIDIA Conformer-Transducer X-Large (en-US)
148
+
149
+ <style>
150
+ img {
151
+ display: inline;
152
+ }
153
+ </style>
154
+
155
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
156
+ | [![Model size](https://img.shields.io/badge/Params-600M-lightgrey#model-badge)](#model-architecture)
157
+ | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
158
+
159
+
160
+ This model transcribes speech in lower case English alphabet along with spaces and apostrophes.
161
+ It is an "extra-large" versions of Conformer-Transducer (around 600M parameters) model.
162
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.
163
+
164
+ ## NVIDIA NeMo: Training
165
+
166
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
167
+ ```
168
+ pip install nemo_toolkit['all']
169
+ '''
170
+ '''
171
+ (if it causes an error):
172
+ pip install nemo_toolkit[all]
173
+ ```
174
+
175
+ ## How to Use this Model
176
+
177
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
178
+
179
+ ### Automatically instantiate the model
180
+
181
+ ```python
182
+ import nemo.collections.asr as nemo_asr
183
+ asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
184
+ ```
185
+
186
+ ### Transcribing using Python
187
+ First, let's get a sample
188
+ ```
189
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
190
+ ```
191
+ Then simply do:
192
+ ```
193
+ asr_model.transcribe(['2086-149220-0033.wav'])
194
+ ```
195
+
196
+ ### Transcribing many audio files
197
+
198
+ ```shell
199
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
200
+ pretrained_name="nvidia/stt_en_conformer_transducer_xlarge"
201
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
202
+ ```
203
+
204
+ ### Input
205
+
206
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
207
+
208
+ ### Output
209
+
210
+ This model provides transcribed speech as a string for a given audio sample.
211
+
212
+ ## Model Architecture
213
+
214
+ Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html).
215
+
216
+ ## Training
217
+
218
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml).
219
+
220
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
221
+
222
+ ### Datasets
223
+
224
+ All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech:
225
+
226
+ - Librispeech 960 hours of English speech
227
+ - Fisher Corpus
228
+ - Switchboard-1 Dataset
229
+ - WSJ-0 and WSJ-1
230
+ - National Speech Corpus (Part 1, Part 6)
231
+ - VCTK
232
+ - VoxPopuli (EN)
233
+ - Europarl-ASR (EN)
234
+ - Multilingual Librispeech (MLS EN) - 2,000 hrs subset
235
+ - Mozilla Common Voice (v8.0)
236
+ - People's Speech - 12,000 hrs subset
237
+
238
+ Note: older versions of the model may have trained on smaller set of datasets.
239
+
240
+ ## Performance
241
+
242
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
243
+
244
+ | Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | WSJ Eval92 | WSJ Dev93 | NSC Part 1 | MLS Test | MLS Dev | MCV Test 8.0 | Train Dataset |
245
+ |---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|----|------|
246
+ | 1.10.0 | SentencePiece Unigram | 1024 | 3.01 | 1.62 | 1.17 | 2.05 | 5.70 | 5.32 | 4.59 | 6.46 | NeMo ASRSET 3.0 |
247
+
248
+ ## Limitations
249
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
250
+
251
+ ## NVIDIA Riva: Deployment
252
+
253
+ [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
254
+ Additionally, Riva provides:
255
+
256
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
257
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
258
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
259
+
260
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
261
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
262
+
263
+ ## References
264
+ [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
265
+ [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
266
+ [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
267
+
268
+ ## Licence
269
+
270
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.