smajumdar94 commited on
Commit
cc237e9
·
1 Parent(s): 7b9b1cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -0
README.md CHANGED
@@ -1,3 +1,166 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: nemo
5
+ datasets:
6
+ - librispeech_asr
7
+ thumbnail: null
8
+ tags:
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - audio
12
+ - Transducer
13
+ - Citrinet
14
+ - Transformer
15
+ - pytorch
16
+ - NeMo
17
+ - hf-asr-leaderboard
18
  license: cc-by-4.0
19
+ widget:
20
+ - example_title: Librispeech sample 1
21
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
22
+ - example_title: Librispeech sample 2
23
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
24
+ model-index:
25
+ - name: stt_en_citrinet_256_ls
26
+ results:
27
+ - task:
28
+ name: Automatic Speech Recognition
29
+ type: automatic-speech-recognition
30
+ dataset:
31
+ name: LibriSpeech (clean)
32
+ type: librispeech_asr
33
+ config: clean
34
+ split: test
35
+ args:
36
+ language: en
37
+ metrics:
38
+ - name: Test WER
39
+ type: wer
40
+ value: 3.78
41
+ - task:
42
+ type: Automatic Speech Recognition
43
+ name: automatic-speech-recognition
44
+ dataset:
45
+ name: LibriSpeech (other)
46
+ type: librispeech_asr
47
+ config: other
48
+ split: test
49
+ args:
50
+ language: en
51
+ metrics:
52
+ - name: Test WER
53
+ type: wer
54
+ value: 9.6
55
  ---
56
+
57
+ # NVIDIA Citrinet CTC 384 Librispeech (en-US)
58
+
59
+ <style>
60
+ img {
61
+ display: inline;
62
+ }
63
+ </style>
64
+
65
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Citrinet--CTC-lightgrey#model-badge)](#model-architecture)
66
+ | [![Model size](https://img.shields.io/badge/Params-21M-lightgrey#model-badge)](#model-architecture)
67
+ | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
68
+ | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) |
69
+
70
+
71
+ This model transcribes speech in lower case English alphabet along with spaces and apostrophes.
72
+ It is an "small" versions of Citrinet-CTC (around 21 parameters) model.
73
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#citrinet) for complete architecture details.
74
+ It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva).
75
+
76
+ ## NVIDIA NeMo: Training
77
+
78
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
79
+ ```
80
+ pip install nemo_toolkit['all']
81
+ ```
82
+
83
+ ## How to Use this Model
84
+
85
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
86
+
87
+ ### Automatically instantiate the model
88
+
89
+ ```python
90
+ import nemo.collections.asr as nemo_asr
91
+ asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_citrinet_384_ls")
92
+ ```
93
+
94
+ ### Transcribing using Python
95
+ First, let's get a sample
96
+ ```
97
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
98
+ ```
99
+ Then simply do:
100
+ ```
101
+ asr_model.transcribe(['2086-149220-0033.wav'])
102
+ ```
103
+
104
+ ### Transcribing many audio files
105
+
106
+ ```shell
107
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
108
+ pretrained_name="nvidia/stt_en_citrinet_384_ls"
109
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
110
+ ```
111
+
112
+ ### Input
113
+
114
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
115
+
116
+ ### Output
117
+
118
+ This model provides transcribed speech as a string for a given audio sample.
119
+
120
+ ## Model Architecture
121
+
122
+ Citrinet-CTC model is an autoregressive variant of Citrinet model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer Loss. You may find more info on the detail of this model here: [Citrinet Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html).
123
+
124
+ ## Training
125
+
126
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/citrinet/citrinet_1024.yaml) (Note: Change the `model.model_defaults.filters` to match the model size).
127
+
128
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
129
+
130
+ ### Datasets
131
+
132
+ All the models in this collection are trained on a just the Librispeech Dataset:
133
+
134
+ - Librispeech 960 hours of English speech
135
+
136
+
137
+ ## Performance
138
+
139
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
140
+
141
+ | Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean |
142
+ |---------|---------------------------|-----------------|---------------|---------------|
143
+ | 1.0.0 | SentencePiece Unigram [2] | 256 | 7.9 | 3.2 |
144
+
145
+ ## Limitations
146
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
147
+
148
+ ## Deployment with NVIDIA Riva
149
+
150
+ For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded.
151
+ Additionally, Riva provides:
152
+
153
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
154
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
155
+ * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support
156
+
157
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
158
+
159
+ ## References
160
+ [1] [ Citrinet: Closing the Gap between Non-Autoregressive and Autoregressive End-to-End Models for Automatic Speech Recognition](https://arxiv.org/abs/2104.01721)
161
+ [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
162
+ [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
163
+
164
+ ## Licence
165
+
166
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.