File size: 9,566 Bytes
88e32ca f65e7ca 88e32ca f65e7ca a43d5d7 f65e7ca a43d5d7 f65e7ca a43d5d7 f65e7ca a43d5d7 f65e7ca a43d5d7 f65e7ca a43d5d7 f65e7ca 88e32ca f65e7ca 09b7359 a43d5d7 f65e7ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
---
language:
- en
library_name: nemo
datasets:
- librispeech_asr
- fisher_corpus
- Switchboard-1
- WSJ-0
- WSJ-1
- National-Singapore-Corpus-Part-1
- National-Singapore-Corpus-Part-6
- vctk
- VoxPopuli-(EN)
- Europarl-ASR-(EN)
- Multilingual-LibriSpeech-(2000-hours)
- mozilla-foundation/common_voice_8_0
- MLCommons/peoples_speech
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- Transducer
- FastConformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: stt_en_fastconformer_transducer_xlarge
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 1.59
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 2.71
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech
type: facebook/multilingual_librispeech
config: english
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 4.58
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
config: en
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 5.48
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Wall Street Journal 92
type: wsj_0
args:
language: en
metrics:
- name: Test WER
type: wer
value: 1.09
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Wall Street Journal 93
type: wsj_1
args:
language: en
metrics:
- name: Test WER
type: wer
value: 2.00
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: National Singapore Corpus
type: nsc_part_1
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 4.48
---
# NVIDIA FastConformer-Transducer XXLarge (en)
<style>
img {
display: inline;
}
</style>
| [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--Transducer-lightgrey#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-1.2B-lightgrey#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-en-lightgrey#model-badge)](#datasets)
This model transcribes speech in lower case English alphabet.
It is a "extra extra large" version of FastConformer Transducer (around 1.2B parameters) model.
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
## NVIDIA NeMo: Training
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
```
## How to Use this Model
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
### Automatically instantiate the model
```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(model_name="nvidia/stt_en_fastconformer_transducer_xxlarge")
```
### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```
### Transcribing many audio files
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_en_fastconformer_transducer_xxlarge"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```
### Input
This model accepts 16000 Hz Mono-channel Audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with a Transducer decoder (RNNT) loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
## Training
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/fast-conformer_transducer_bpe.yaml).
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
### Datasets
The model in this collection is trained on a composite dataset (NeMo ASRSet En) comprising several thousand hours of English speech:
- Librispeech 960 hours of English speech
- Fisher Corpus
- Switchboard-1 Dataset
- WSJ-0 and WSJ-1
- National Speech Corpus (Part 1, Part 6)
- VCTK
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual Librispeech (MLS EN) - 2,000 hrs subset
- Mozilla Common Voice (v7.0)
- People's Speech - 12,000 hrs subset
## Performance
The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
The following tables summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
|**Version**|**Tokenizer**|**Vocabulary Size**|**LS test-other**|**LS test-clean**|**WSJ Eval92**|**WSJ Dev93**|**NSC Part 1**|**MLS Test**|**MCV Test 7.0**| Train Dataset |
|---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|------|
| 1.20.0 | SentencePiece Unigram | 1024 | 3.04 | 1.59 | 1.27 | 2.13 | 5.84 | 4.88 | 5.11 | NeMo ASRSET 3.0 |
| 1.20.1 | SentencePiece Unigram | 1024 | 2.71 | 1.50 | 1.09 | 2.00 | 4.48 | 4.32 | 5.48 | NeMo ASRSET 3.0 |
## Limitations
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
## NVIDIA Riva: Deployment
[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
Additionally, Riva provides:
* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
## References
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
[2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
## Licence
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
|