Automatic Speech Recognition
NeMo
PyTorch
Italian
speech
audio
Transducer
Conformer
Transformer
NeMo
hf-asr-leaderboard
Eval Results
File size: 7,971 Bytes
c8496ff
b838be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8496ff
b838be3
9124794
b838be3
 
 
 
 
 
 
 
 
 
 
 
 
 
9124794
b838be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9124794
b838be3
 
 
 
 
 
 
 
 
 
 
 
 
9124794
c8496ff
b838be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a5de75
 
 
b838be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
language:
- it
library_name: nemo
datasets:
- facebook/voxpopuli
- facebook/multilingual_librispeech
- mozilla-foundation/common_voice_11_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- Transducer
- Conformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
model-index:
- name: stt_it_conformer_transducer_large
  results:
  - task:
      type: Automatic Speech Recognition
      name: speech-recognition
    dataset:
      name: common-voice-11-0
      type: mozilla-foundation/common_voice_11_0
      config: it
      split: dev
      args:
        language: it
    metrics:
    - name: Dev WER
      type: wer
      value: 4.8
  - task:
      type: Automatic Speech Recognition
      name: speech-recognition
    dataset:
      name: common-voice-11-0
      type: mozilla-foundation/common_voice_11_0
      config: it
      split: test
      args:
        language: it
    metrics:
    - name: Test WER
      type: wer
      value: 5.24
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Multilingual LibriSpeech
      type: facebook/multilingual_librispeech
      config: italian
      split: dev
      args:
        language: it
    metrics:
    - name: Dev WER
      type: wer
      value: 14.62
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Multilingual LibriSpeech
      type: facebook/multilingual_librispeech
      config: italian
      split: test
      args:
        language: it
    metrics:
    - name: Test WER
      type: wer
      value: 12.18
  - task:
      type: Automatic Speech Recognition
      name: speech-recognition
    dataset:
      name: VoxPopuli
      type: facebook/voxpopuli
      config: it
      split: dev
      args:
        language: it
    metrics:
    - name: Dev WER
      type: wer
      value: 12.0
  - task:
      type: Automatic Speech Recognition
      name: speech-recognition
    dataset:
      name: VoxPopuli
      type: facebook/voxpopuli
      config: it
      split: test
      args:
        language: it
    metrics:
    - name: Test WER
      type: wer
      value: 15.15
---
# NVIDIA Conformer-Transducer Large (it)

<style>
img {
 display: inline;
}
</style>

| [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-it-lightgrey#model-badge)](#datasets)


This model transcribes speech in lowercase Italian alphabet including spaces, and was trained on a composite dataset comprising of 487 hours of Italian speech. It is a "large" variant of Conformer-Transducer, with around 120 million parameters.
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.

## NVIDIA NeMo: Training

To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
``` 

## How to Use this Model

The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

### Automatically instantiate the model

```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_it_conformer_transducer_large")
```

### Transcribing using Python

Simply do:

```
asr_model.transcribe(['sample.wav'])
```

### Transcribing many audio files

```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py 
 pretrained_name="nvidia/stt_it_conformer_transducer_large" 
 audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```

### Input

This model accepts 16000 Hz Mono-channel Audio (wav files) as input.

### Output

This model provides transcribed speech as a string for a given audio sample.

## Model Architecture

Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). 

## Training

The NeMo toolkit [3] was used for training these models for over several hundred epochs. These models are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml).

The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).

### Datasets

All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of 487 hours of Italian speech:
- Mozilla Common Voice 11.0 (Italian) - 220 hours after data cleaning
- Multilingual LibriSpeech (Italian) - 214 hours after data cleaning
- VoxPopuli transcribed subset (Italian) - 53 hours after data cleaning

## Performance

The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.

| Version | Tokenizer             | Vocabulary Size | MCV 11.0 Dev | MCV 11.0 Test | MLS Dev | MLS Test | VoxPopuli Dev | VoxPopuli Test | Train Dataset      |
|---------|-----------------------|-----------------|--------------|---------------|---------|----------|---------------|----------------|--------------------|
| 1.13.0  | SentencePiece Unigram | 1024            | 4.80         | 5.24          | 14.62   | 12.18    | 12.00         | 15.15          | NeMo ASRSET It 2.0 |

## Limitations
Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.

## NVIDIA Riva: Deployment

[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. 
Additionally, Riva provides: 

* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours 
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization 
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support 

Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).  
Check out [Riva live demo](https://developer.nvidia.com/riva#demos). 

## References
- [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
- [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
- [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)

## Licence

License to use this model is covered by the [CC-BY-4 License](https://creativecommons.org/licenses/by/4.0/legalcode) unless another License/Terms Of Use/EULA is clearly specified. By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4 License](https://creativecommons.org/licenses/by/4.0/legalcode).