sasha-meister commited on
Commit
0b858da
·
1 Parent(s): 97f5553

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +200 -0
README.md CHANGED
@@ -1,3 +1,203 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ru
4
+ library_name: nemo
5
+ datasets:
6
+ - mozilla-foundation/common_voice_10_0
7
+ - SberDevices/Golos
8
+ - Russian-LibriSpeech
9
+ - SOVA-Dataset
10
+ tags:
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - audio
14
+ - CTC
15
+ - Conformer
16
+ - Transformer
17
+ - pytorch
18
+ - NeMo
19
+ - hf-asr-leaderboard
20
+ - Riva
21
  license: cc-by-4.0
22
+ model-index:
23
+ - name: stt_ru_conformer_ctc_large
24
+ results:
25
+ - task:
26
+ type: Automatic Speech Recognition
27
+ name: speech-recognition
28
+ dataset:
29
+ name: mozilla-10
30
+ type: mozilla-foundation/common_voice_10_0
31
+ config: ru
32
+ split: dev
33
+ args:
34
+ language: ru
35
+ metrics:
36
+ - name: Dev WER
37
+ type: wer
38
+ value: 3.9
39
+ - task:
40
+ type: Automatic Speech Recognition
41
+ name: automatic-speech-recognition
42
+ dataset:
43
+ name: Mozilla Common Voice 10.0
44
+ type: mozilla-foundation/common_voice_10_0
45
+ config: ru
46
+ split: test
47
+ args:
48
+ language: ru
49
+ metrics:
50
+ - name: Test WER
51
+ type: wer
52
+ value: 4.3
53
+ - task:
54
+ type: Automatic Speech Recognition
55
+ name: automatic-speech-recognition
56
+ dataset:
57
+ name: Sberdevices Golos (crowd)
58
+ type: SberDevices/Golos
59
+ config: crowd
60
+ split: test
61
+ args:
62
+ language: ru
63
+ metrics:
64
+ - name: Test WER
65
+ type: wer
66
+ value: 2.8
67
+ - task:
68
+ type: Automatic Speech Recognition
69
+ name: automatic-speech-recognition
70
+ dataset:
71
+ name: Sberdevices Golos (farfield)
72
+ type: SberDevices/Golos
73
+ config: farfield
74
+ split: test
75
+ args:
76
+ language: ru
77
+ metrics:
78
+ - name: Test WER
79
+ type: wer
80
+ value: 7.1
81
+ - task:
82
+ type: Automatic Speech Recognition
83
+ name: automatic-speech-recognition
84
+ dataset:
85
+ name: Russian LibriSpeech
86
+ type: RuLS
87
+ config: ru
88
+ split: test
89
+ args:
90
+ language: ru
91
+ metrics:
92
+ - name: Test WER
93
+ type: wer
94
+ value: 13.5
95
  ---
96
+ # NVIDIA Conformer-Transducer Large (Russian)
97
+
98
+ <style>
99
+ img {
100
+ display: inline;
101
+ }
102
+ </style>
103
+
104
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
105
+ | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
106
+ | [![Language](https://img.shields.io/badge/Language-ru-lightgrey#model-badge)](#datasets)
107
+
108
+ This model transcribes speech into lowercase Cyrillic alphabet including space, and is trained on around 1636 hours of Russian speech data.
109
+ It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters.
110
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc) for complete architecture details.
111
+
112
+ ## Usage
113
+
114
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
115
+
116
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
117
+
118
+ ```
119
+ pip install nemo_toolkit['all']
120
+ ```
121
+
122
+ ### Automatically instantiate the model
123
+
124
+ ```python
125
+ import nemo.collections.asr as nemo_asr
126
+ asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="stt_ru_conformer_ctc_large")
127
+ ```
128
+
129
+ ### Transcribing using Python
130
+ Simply do:
131
+ ```
132
+ asr_model.transcribe(['<your_audio>.wav'])
133
+ ```
134
+
135
+ ### Transcribing many audio files
136
+
137
+ ```shell
138
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
139
+ pretrained_name="nvidia/stt_ru_conformer_ctc_large"
140
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
141
+ ```
142
+
143
+ ### Input
144
+
145
+ This model accepts 16 kHz mono-channel Audio (wav files) as input.
146
+
147
+ ### Output
148
+
149
+ This model provides transcribed speech as a string for a given audio sample.
150
+
151
+ ## Model Architecture
152
+
153
+ Conformer-CTC model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc).
154
+
155
+ ## Training
156
+
157
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml).
158
+
159
+ The vocabulary we use contains 33 characters:
160
+ ```python
161
+ [' ', 'а', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ъ', 'ы', 'ь', 'э', 'ю', 'я']
162
+ ```
163
+
164
+ Rare symbols with diacritics were replaced during preprocessing.
165
+
166
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
167
+
168
+ ### Datasets
169
+ All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of more than a thousand hours of Russian speech:
170
+
171
+ - Mozilla Common Voice 10.0 (Russian) - train subset [28 hours]
172
+ - Golos - crowd [1070 hours] and fairfield [111 hours] subsets
173
+ - Russian LibriSpeech (RuLS) [92 hours]
174
+ - SOVA - RuAudiobooksDevices [260 hours] and RuDevices [75 hours] subsets
175
+
176
+ ## Performance
177
+
178
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
179
+
180
+ | Version | Tokenizer | Vocabulary Size | MCV 10.0 dev | MCV 10.0 test | GOLOS-crowd test | GOLOS-farfield test | RuLS test | Train Dataset |
181
+ |---------|-----------------------|-----------------|--------------|---------------|------------------|---------------------|-----------|---------------|
182
+ | 1.13.0 | SentencePiece Unigram | 128 | 3.94 | 4.28 | 2.77 | 7.15 | 13.60 | NeMo ASRSET |
183
+
184
+ ## Limitations
185
+
186
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
187
+
188
+ ## Deployment with NVIDIA Riva
189
+
190
+ For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded.
191
+ Additionally, Riva provides:
192
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
193
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
194
+ * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support
195
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
196
+
197
+ ## References
198
+
199
+ - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
200
+
201
+ - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
202
+
203
+ - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)