oleksandrfluxon
commited on
Commit
·
acbf23c
1
Parent(s):
a8c0df9
Create pipeline.py
Browse files- pipeline.py +78 -0
pipeline.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
from accelerate import dispatch_model, infer_auto_device_map
|
4 |
+
from accelerate.utils import get_balanced_memory
|
5 |
+
from typing import Dict, List, Any
|
6 |
+
|
7 |
+
class PreTrainedPipeline():
|
8 |
+
def __init__(self, path=""):
|
9 |
+
path = "oleksandrfluxon/mpt-30b-chat-test"
|
10 |
+
print("===> path", path)
|
11 |
+
|
12 |
+
with torch.autocast('cuda'):
|
13 |
+
config = transformers.AutoConfig.from_pretrained(
|
14 |
+
path,
|
15 |
+
trust_remote_code=True
|
16 |
+
)
|
17 |
+
# config.attn_config['attn_impl'] = 'triton'
|
18 |
+
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
19 |
+
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
|
20 |
+
|
21 |
+
print("===> loading model")
|
22 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
23 |
+
path,
|
24 |
+
config=config,
|
25 |
+
# torch_dtype=torch.bfloat16, # Load model weights in bfloat16
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
trust_remote_code=True,
|
28 |
+
# device_map="auto",
|
29 |
+
# load_in_8bit=True # Load model in the lowest 4-bit precision quantization
|
30 |
+
)
|
31 |
+
# model.to('cuda')
|
32 |
+
print("===> model loaded")
|
33 |
+
|
34 |
+
# removed device_map="auto"
|
35 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b', padding_side="left")
|
36 |
+
|
37 |
+
|
38 |
+
max_memory = get_balanced_memory(
|
39 |
+
model,
|
40 |
+
max_memory=None,
|
41 |
+
no_split_module_classes=["MPTBlock"],
|
42 |
+
dtype='float16',
|
43 |
+
low_zero=False
|
44 |
+
)
|
45 |
+
|
46 |
+
device_map = infer_auto_device_map(
|
47 |
+
model,
|
48 |
+
max_memory=max_memory,
|
49 |
+
no_split_module_classes=["MPTBlock"],
|
50 |
+
dtype='float16'
|
51 |
+
)
|
52 |
+
model = dispatch_model(model, device_map=device_map)
|
53 |
+
|
54 |
+
|
55 |
+
# device='cuda:0'
|
56 |
+
self.pipeline = transformers.pipeline('text-generation', model=model, tokenizer=tokenizer)
|
57 |
+
print("===> init finished")
|
58 |
+
|
59 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
60 |
+
"""
|
61 |
+
data args:
|
62 |
+
inputs (:obj: `str`)
|
63 |
+
parameters (:obj: `str`)
|
64 |
+
Return:
|
65 |
+
A :obj:`str`: todo
|
66 |
+
"""
|
67 |
+
# get inputs
|
68 |
+
inputs = data.pop("inputs",data)
|
69 |
+
parameters = data.pop("parameters", {})
|
70 |
+
date = data.pop("date", None)
|
71 |
+
print("===> inputs", inputs)
|
72 |
+
print("===> parameters", parameters)
|
73 |
+
|
74 |
+
with torch.autocast('cuda'):
|
75 |
+
result = self.pipeline(inputs, **parameters)
|
76 |
+
print("===> result", result)
|
77 |
+
|
78 |
+
return result
|