oleksandrfluxon commited on
Commit
f3b8e58
·
1 Parent(s): 5c62bfd

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +15 -13
handler.py CHANGED
@@ -11,6 +11,7 @@ class EndpointHandler:
11
  self.model = AutoModelForCausalLM.from_pretrained(
12
  path, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
13
  )
 
14
  self.device = "cuda" if torch.cuda.is_available() else "cpu"
15
 
16
  def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
@@ -18,16 +19,17 @@ class EndpointHandler:
18
  inputs = data.pop("inputs", data)
19
  parameters = data.pop("parameters", None)
20
 
21
- # preprocess
22
- inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)
23
-
24
- # pass inputs with all kwargs in data
25
- if parameters is not None:
26
- outputs = self.model.generate(**inputs, **parameters)
27
- else:
28
- outputs = self.model.generate(**inputs)
29
-
30
- # postprocess the prediction
31
- prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
32
-
33
- return [{"generated_text": prediction}]
 
 
11
  self.model = AutoModelForCausalLM.from_pretrained(
12
  path, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
13
  )
14
+ print('===> cuda.is_available', torch.cuda.is_available())
15
  self.device = "cuda" if torch.cuda.is_available() else "cpu"
16
 
17
  def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
 
19
  inputs = data.pop("inputs", data)
20
  parameters = data.pop("parameters", None)
21
 
22
+ with torch.autocast('cuda'):
23
+ # preprocess
24
+ inputs = self.tokenizer(inputs, return_tensors="pt").to('cuda')
25
+
26
+ # pass inputs with all kwargs in data
27
+ if parameters is not None:
28
+ outputs = self.model.generate(**inputs, **parameters)
29
+ else:
30
+ outputs = self.model.generate(**inputs)
31
+
32
+ # postprocess the prediction
33
+ prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
34
+
35
+ return [{"generated_text": prediction}]