File size: 3,699 Bytes
fac6a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-full

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4893
- Rewards/chosen: -1.9379
- Rewards/rejected: -3.0213
- Rewards/accuracies: 0.7718
- Rewards/margins: 1.0835
- Logps/rejected: -563.9073
- Logps/chosen: -477.8896
- Logits/rejected: 0.6827
- Logits/chosen: -0.4606

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6338        | 0.1   | 100  | 0.6333          | -0.4184        | -0.6017          | 0.6865             | 0.1833          | -321.9407      | -325.9421    | -2.4857         | -2.5392       |
| 0.5643        | 0.21  | 200  | 0.5547          | -1.1977        | -1.8547          | 0.7480             | 0.6570          | -447.2422      | -403.8748    | 0.1190          | -0.4672       |
| 0.5066        | 0.31  | 300  | 0.5214          | -0.9561        | -1.7858          | 0.7778             | 0.8297          | -440.3582      | -379.7161    | -0.7390         | -1.4155       |
| 0.4941        | 0.42  | 400  | 0.5082          | -1.2581        | -2.1325          | 0.7599             | 0.8744          | -475.0238      | -409.9142    | 0.1688          | -0.7662       |
| 0.506         | 0.52  | 500  | 0.5090          | -1.1067        | -2.0712          | 0.7639             | 0.9645          | -468.8966      | -394.7739    | 1.3983          | 0.0857        |
| 0.4893        | 0.63  | 600  | 0.4953          | -1.4696        | -2.4963          | 0.7579             | 1.0267          | -511.4048      | -431.0652    | 0.9613          | -0.4181       |
| 0.4558        | 0.73  | 700  | 0.4937          | -1.8124        | -2.8894          | 0.7698             | 1.0770          | -550.7128      | -465.3409    | 0.6946          | -0.4445       |
| 0.4781        | 0.84  | 800  | 0.4898          | -1.9968        | -3.0983          | 0.7698             | 1.1015          | -571.6086      | -483.7863    | 0.7311          | -0.4503       |
| 0.495         | 0.94  | 900  | 0.4894          | -1.9365        | -3.0176          | 0.7698             | 1.0812          | -563.5378      | -477.7505    | 0.6757          | -0.4642       |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.0