Ontocord.AI
commited on
Commit
·
9f3edac
1
Parent(s):
7d1de3e
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
```
|
6 |
+
# test merged experts
|
7 |
+
# TODO: add dynamic routing, testing better expert mixtures
|
8 |
+
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM, GPTNeoXLayer
|
14 |
+
from torch import nn
|
15 |
+
class GPTNeoXExpertsForCasualLM(GPTNeoXForCausalLM):
|
16 |
+
""" Stores various experts for layers 9, 10 """ # , 11
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__(config)
|
19 |
+
self.config = config
|
20 |
+
self.orig_chat = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
|
21 |
+
self.uspto_expert = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
|
22 |
+
self.github_expert = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
|
23 |
+
self.pubmed_abstracts_expert = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
|
24 |
+
self.freelaw_expert = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
|
25 |
+
self.arxiv_expert = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
|
26 |
+
self.merged_chat_expert = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
|
27 |
+
self.curr_expert = "merged_chat_expert"
|
28 |
+
|
29 |
+
def generate_with_expert(self, text, tokenizer, expert="merged_chat_expert", return_answer_only=False, do_self_contrastive=True, max_length=512, min_length=1, max_return_sequences=1, do_sample=True, do_beam=False, device="cuda", target_lang=None):
|
30 |
+
"""Generates using one of the experts."""
|
31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
32 |
+
if expert != self.curr_expert:
|
33 |
+
self.curr_expert = expert
|
34 |
+
for layer_id in range(2):
|
35 |
+
if expert == "orig_chat":
|
36 |
+
self.gpt_neox.layers[layer_id+9] = self.orig_chat[layer_id]
|
37 |
+
elif expert == "uspto_expert":
|
38 |
+
self.gpt_neox.layers[layer_id+9] = self.uspto_expert[layer_id]
|
39 |
+
elif expert == "github_expert":
|
40 |
+
self.gpt_neox.layers[layer_id+9] = self.github_expert[layer_id]
|
41 |
+
elif expert == "pubmed_abstracts_expert":
|
42 |
+
self.gpt_neox.layers[layer_id+9] = self.pubmed_abstracts_expert[layer_id]
|
43 |
+
elif expert == "arxiv_expert":
|
44 |
+
self.gpt_neox.layers[layer_id+9] = self.arxiv_expert[layer_id]
|
45 |
+
elif expert == "freelaw_expert":
|
46 |
+
self.gpt_neox.layers[layer_id+9] = self.freelaw_expert[layer_id]
|
47 |
+
elif expert == "merged_chat_expert":
|
48 |
+
self.gpt_neox.layers[layer_id+9] = self.merged_chat_expert[layer_id]
|
49 |
+
|
50 |
+
if type(text) is str:
|
51 |
+
text = [text]
|
52 |
+
text = [p.strip() for p in text]
|
53 |
+
input_ids = tokenizer(text, return_tensors='pt',padding=True, truncation=True, max_length=max_length )
|
54 |
+
input_ids = input_ids.to(device)
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = self.generate(
|
57 |
+
**input_ids,
|
58 |
+
max_length=max_length,
|
59 |
+
repetition_penalty=1.1,
|
60 |
+
min_length=min_length,
|
61 |
+
do_sample=True,
|
62 |
+
top_p=0.95,
|
63 |
+
penalty_alpha=0.6 if do_self_contrastive else None,
|
64 |
+
top_k=10,
|
65 |
+
)
|
66 |
+
ret = []
|
67 |
+
for i in range(len(outputs)): # can use batch_decode, unless we want to do something special here
|
68 |
+
out = tokenizer.decode(outputs[i], skip_special_tokens=True)
|
69 |
+
if return_answer_only:
|
70 |
+
out = out[len(text[i]):].lstrip(".? \n\t")
|
71 |
+
ret.append(out)
|
72 |
+
|
73 |
+
return ret
|
74 |
+
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained("theblackcat102/pythia-1b-deduped-sft")
|
76 |
+
|
77 |
+
tokenizer.pad_token = tokenizer.eos_token
|
78 |
+
|
79 |
+
|
80 |
+
model1 = GPTNeoXExpertsForCasualLM.from_pretrained("Multi-Domain-Expert-Layers/MDEL-theblackcat-chat-5-experts")
|
81 |
+
model1=model1.half().cuda().eval()
|
82 |
+
for expert in ["orig_chat", "merged_chat_expert", "uspto_expert", "github_expert", "pubmed_abstracts_expert", "arxiv_expert", "freelaw_expert"]:
|
83 |
+
print (f'## {expert}')
|
84 |
+
print (model1.generate_with_expert("<human> Write a patent about an electric toothbrush\n<bot>", tokenizer, expert=expert)[0])
|
85 |
+
print (f'## {expert} more')
|
86 |
+
print (model1.generate_with_expert("Field of the Invention.\nAn electric toothbrush\n", tokenizer, expert=expert)[0])
|
87 |
+
```
|
88 |
+
|
89 |
+
```
|
90 |
+
|
91 |
+
def recreate_merged_expert():
|
92 |
+
model1 = GPTNeoXExpertsForCasualLM.from_pretrained("theblackcat102/pythia-1b-deduped-sft").float()
|
93 |
+
|
94 |
+
model2 = AutoModelForCausalLM.from_pretrained("stillerman/MDEL-pubmed-feelaw-github-arxiv").float()
|
95 |
+
|
96 |
+
model_uspto = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-uspto").float()
|
97 |
+
|
98 |
+
model_github = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-github").float()
|
99 |
+
model_pubmed_abstracts = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-pubmed_abstracts").float()
|
100 |
+
model_freelaw = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-freelaw").float()
|
101 |
+
model_arxiv = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-arxiv").float()
|
102 |
+
|
103 |
+
model = AutoModelForCausalLM.from_pretrained("theblackcat102/pythia-1b-deduped-sft").float() # half().cuda().eval()
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
for layer_id in [9,10]: #9,10,11,12,13
|
107 |
+
model1.orig_chat[layer_id-9] = model.gpt_neox.layers[layer_id]
|
108 |
+
|
109 |
+
for layer_id in [9,10]: #9,10,11,12,13
|
110 |
+
for p1, p2, p3 in zip(model1.gpt_neox.layers[layer_id].parameters(), model2.gpt_neox.layers[layer_id].parameters(), model_uspto.gpt_neox.layers[layer_id].parameters()):
|
111 |
+
p1.data = p1.data*.6 + p2.data*0.3 + p3.data*0.1
|
112 |
+
model1.merged_chat_expert[layer_id-9] = model1.gpt_neox.layers[layer_id]
|
113 |
+
|
114 |
+
#model1.uspto_expert.layers_9_10_11 = []
|
115 |
+
for layer_id in [9,10]: #9,10,11,12,13
|
116 |
+
for p1, p2 in zip(model_uspto.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
|
117 |
+
p1.data = p1.data*.6 + p2.data*0.4
|
118 |
+
model1.uspto_expert[layer_id-9] = model_uspto.gpt_neox.layers[layer_id]
|
119 |
+
|
120 |
+
#model1.github_expert.layers_9_10_11 = []
|
121 |
+
for layer_id in [9,10]: #9,10,11,12,13
|
122 |
+
for p1, p2 in zip(model_github.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
|
123 |
+
p1.data = p1.data*.6 + p2.data*0.4
|
124 |
+
model1.github_expert[layer_id-9] = model_github.gpt_neox.layers[layer_id]
|
125 |
+
|
126 |
+
#model1.pubmed_abstracts_expert.layers_9_10_11 = []
|
127 |
+
for layer_id in [9,10]: #9,10,11,12,13
|
128 |
+
for p1, p2 in zip(model_pubmed_abstracts.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
|
129 |
+
p1.data = p1.data*.6 + p2.data*0.4
|
130 |
+
model1.pubmed_abstracts_expert[layer_id-9] = model_pubmed_abstracts.gpt_neox.layers[layer_id]
|
131 |
+
|
132 |
+
#model1.freelaw_expert.layers_9_10_11 = []
|
133 |
+
for layer_id in [9,10]: #9,10,11,12,13
|
134 |
+
for p1, p2 in zip(model_freelaw.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
|
135 |
+
p1.data = p1.data*.6 + p2.data*0.4
|
136 |
+
model1.freelaw_expert[layer_id-9] = model_freelaw.gpt_neox.layers[layer_id]
|
137 |
+
|
138 |
+
#model1.arxiv_expert.layers_9_10_11 = []
|
139 |
+
for layer_id in [9,10]: #9,10,11,12,13
|
140 |
+
for p1, p2 in zip(model_arxiv.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
|
141 |
+
p1.data = p1.data*.6 + p2.data*0.4
|
142 |
+
model1.arxiv_expert[layer_id-9] = model_arxiv.gpt_neox.layers[layer_id]
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
model1 = model1.half().eval()
|
147 |
+
model1.save_pretrained("MDEL-theblackcat-chat-5-experts", torch_dtype=torch.float16)
|
148 |
+
model1.push_to_hub("Multi-Domain-Expert-Layers/MDEL-theblackcat-chat-5-experts")
|
149 |
+
return model1
|
150 |
+
```
|