File size: 3,139 Bytes
7ef44a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
datasets:
- anon8231489123/ShareGPT_Vicuna_unfiltered
- ehartford/wizard_vicuna_70k_unfiltered
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
- QingyiSi/Alpaca-CoT
- teknium/GPT4-LLM-Cleaned
- teknium/GPTeacher-General-Instruct
- metaeval/ScienceQA_text_only
- hellaswag
- tasksource/mmlu
- openai/summarize_from_feedback
language:
- en
library_name: transformers
pipeline_tag: text-generation
---

# Manticore 13B - Preview Release (previously Wizard Mega)

Manticore 13B is a Llama 13B model fine-tuned on the following datasets:
- [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) - based on a cleaned and de-suped subset
- [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered)
- [Wizard-Vicuna](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
- [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT)
- [GPT4-LLM-Cleaned](https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned)
- [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct)
- ARC-Easy & ARC-Challenge - instruct augmented  for detailed responses
- mmlu: instruct augmented for detailed responses subset including
  - abstract_algebra
  - conceptual_physics
  - formal_logic
  - high_school_physics
  - logical_fallacies
- [hellaswag](https://huggingface.co/datasets/hellaswag) - 5K row subset of instruct augmented for concise responses
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses
- [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization


# Demo

Try out the model in HF Spaces. The demo uses a quantized GGML version of the model to quickly return predictions on smaller GPUs (and even CPUs). Quantized GGML may have some minimal loss of model quality.
- https://huggingface.co/spaces/openaccess-ai-collective/manticore-ggml

## Release Notes

- https://wandb.ai/wing-lian/manticore-13b/runs/nq3u3uoh/workspace

## Build

Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB 
 - Preview Release: 1 epoch taking 8 hours. 
 - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).

## Bias, Risks, and Limitations
Manticore has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
Manticore was fine-tuned from the base model LlaMa 13B, please refer to its model card's Limitations Section for relevant information.

## Examples

````
### Instruction: write Python code that returns the first n numbers of the Fibonacci sequence using memoization.

### Assistant: 
````

```
### Instruction: Finish the joke, a mechanic and a car salesman walk into a bar...  

### Assistant:
```