|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch MiniCPM model.""" |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union, Dict |
|
import os |
|
from tqdm import tqdm |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
import numpy as np |
|
from copy import deepcopy |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers import AutoTokenizer |
|
from transformers.modeling_attn_mask_utils import ( |
|
AttentionMaskConverter, |
|
_prepare_4d_attention_mask, |
|
_prepare_4d_causal_attention_mask, |
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
_prepare_4d_attention_mask_for_sdpa, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.utils.import_utils import is_torch_fx_available |
|
from .configuration_minicpm import MiniCPMConfig |
|
import re |
|
|
|
try: |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
except: |
|
pass |
|
|
|
|
|
|
|
|
|
if is_torch_fx_available(): |
|
if not is_torch_greater_or_equal_than_1_13: |
|
import torch.fx |
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "MiniCPMConfig" |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
warnings.warn( |
|
"Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask" |
|
) |
|
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
warnings.warn( |
|
"Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask" |
|
) |
|
return AttentionMaskConverter._make_causal_mask( |
|
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length |
|
) |
|
|
|
|
|
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float): |
|
old_dtype = hidden.dtype |
|
variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) |
|
hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype) |
|
return hidden * weight |
|
|
|
|
|
class MiniCPMRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
MiniCPMRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
return rms_layernorm(hidden_states, self.weight, self.variance_epsilon) |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm) |
|
|
|
|
|
class MiniCPMRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
|
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32 |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class MiniCPMLongRoPE(MiniCPMRotaryEmbedding): |
|
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, short_factor=None, long_factor=None, original_max_position_embeddings=None): |
|
self.short_factor = short_factor |
|
self.long_factor = long_factor |
|
self.original_max_position_embeddings = original_max_position_embeddings |
|
scale = (max_position_embeddings / |
|
self.original_max_position_embeddings) |
|
self.scaling_factor = math.sqrt( |
|
1 + math.log(scale) / |
|
math.log(self.original_max_position_embeddings)) |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
if seq_len > self.original_max_position_embeddings: |
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device) |
|
else: |
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device) |
|
|
|
freqs = torch.mul( |
|
torch.outer(t, 1.0 / ext_factors).to(device=device), |
|
self.inv_freq.to(device=device).to(dtype) |
|
) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype) * self.scaling_factor, persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype) * self.scaling_factor, persistent=False) |
|
|
|
|
|
class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding): |
|
"""MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding): |
|
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
|
|
|
|
|
|
|
|
orig_dtype = k.dtype |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_fp32 = q.to(dtype=torch.float32, device=q.device) |
|
k_fp32 = k.to(dtype=torch.float32, device=k.device) |
|
q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin) |
|
k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin) |
|
return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype) |
|
|
|
class MiniCPMMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
if self.config.pretraining_tp > 1: |
|
slice = self.intermediate_size // self.config.pretraining_tp |
|
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) |
|
up_proj_slices = self.up_proj.weight.split(slice, dim=0) |
|
down_proj_slices = self.down_proj.weight.split(slice, dim=1) |
|
|
|
gate_proj = torch.cat( |
|
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 |
|
) |
|
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) |
|
|
|
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) |
|
down_proj = [ |
|
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) |
|
] |
|
down_proj = sum(down_proj) |
|
else: |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
return down_proj |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
class MiniCPMAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
self.is_causal = config.is_causal |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = MiniCPMRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
|
|
if scaling_type == "linear": |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "longrope": |
|
self.rotary_emb = MiniCPMLongRoPE( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
short_factor = self.config.rope_scaling["short_factor"], |
|
long_factor = self.config.rope_scaling["long_factor"], |
|
base=self.rope_theta, |
|
original_max_position_embeddings=self.config.rope_scaling["original_max_position_embeddings"] |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
if self.config.pretraining_tp > 1: |
|
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp |
|
query_slices = self.q_proj.weight.split( |
|
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 |
|
) |
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) |
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) |
|
|
|
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] |
|
query_states = torch.cat(query_states, dim=-1) |
|
|
|
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] |
|
key_states = torch.cat(key_states, dim=-1) |
|
|
|
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] |
|
value_states = torch.cat(value_states, dim=-1) |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
if self.config.pretraining_tp > 1: |
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) |
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) |
|
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class MiniCPMFlashAttention2(MiniCPMAttention): |
|
""" |
|
MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
|
|
if hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
class MiniCPMSdpaAttention(MiniCPMAttention): |
|
""" |
|
MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
MINICPM_ATTENTION_CLASSES = { |
|
"eager": MiniCPMAttention, |
|
"flash_attention_2": MiniCPMFlashAttention2, |
|
"sdpa": MiniCPMSdpaAttention, |
|
} |
|
|
|
|
|
class MiniCPMDecoderLayer(nn.Module): |
|
def __init__(self, config: MiniCPMConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) |
|
|
|
self.mlp = MiniCPMMLP(config) |
|
self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.scale_depth = config.scale_depth |
|
self.num_hidden_layers = config.num_hidden_layers |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
MINICPM_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MiniCPMConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.", |
|
MINICPM_START_DOCSTRING, |
|
) |
|
class MiniCPMPreTrainedModel(PreTrainedModel): |
|
config_class = MiniCPMConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MiniCPMDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
MINICPM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.", |
|
MINICPM_START_DOCSTRING, |
|
) |
|
class MiniCPMModel(MiniCPMPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`] |
|
|
|
Args: |
|
config: MiniCPMConfig |
|
""" |
|
|
|
def __init__(self, config: MiniCPMConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._use_sdpa = config._attn_implementation == "sdpa" |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
|
|
self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
self.is_causal = config.is_causal |
|
self.adapt_mean_pooling = config.adapt_mean_pooling |
|
|
|
|
|
self.head = torch.nn.Linear(in_features=1024, out_features=1, bias=False).float() |
|
self.post_init() |
|
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, trust_remote_code=True) |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
adapt_mean_pooling: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb |
|
|
|
|
|
_attention_mask = attention_mask |
|
if self._use_flash_attention_2: |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._use_sdpa and not output_attentions: |
|
|
|
|
|
if self.is_causal: |
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa ( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
else: |
|
attention_mask = _prepare_4d_attention_mask_for_sdpa( |
|
attention_mask, |
|
inputs_embeds.dtype, |
|
) |
|
else: |
|
|
|
if self.is_causal: |
|
attention_mask = _prepare_4d_causal_attention_mask ( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
else: |
|
attention_mask = _prepare_4d_attention_mask( |
|
attention_mask, |
|
inputs_embeds.dtype, |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
|
|
|
|
if adapt_mean_pooling is None: |
|
adapt_mean_pooling = self.adapt_mean_pooling |
|
if adapt_mean_pooling: |
|
attention_mask_ = _attention_mask * _attention_mask.cumsum(dim=1) |
|
s = hidden_states * attention_mask_.unsqueeze(-1).float() |
|
d = attention_mask_.sum(dim=1, keepdim=True).unsqueeze(1).float() /_attention_mask.sum(dim=1, keepdim=True).unsqueeze(1).float() |
|
|
|
hidden_states = s / d |
|
|
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
|
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
@staticmethod |
|
def wmean_pooling(hidden,attention_mask): |
|
attention_mask_ = attention_mask * attention_mask.cumsum(dim=1) |
|
hidden_masked = hidden * attention_mask_.unsqueeze(-1).float() |
|
s = torch.sum(hidden_masked, dim=1) |
|
d = attention_mask_.sum(dim=1, keepdim=True).float() |
|
reps = s / d |
|
return reps |
|
|
|
|
|
def sparse_pooling(self,items, hidden, attention_mask): |
|
hidden = hidden * attention_mask.unsqueeze(-1).float() |
|
max_hidden_norm = torch.max(torch.norm(hidden,dim=-1),dim = -1).values.detach() |
|
token_weights = torch.relu(self.head(hidden.float()/max_hidden_norm.unsqueeze(-1).unsqueeze(-1))) |
|
vocab_size = self.embed_tokens.weight.size(0) |
|
input_ids = items["input_ids"] |
|
sparse_embedding_chunks = [] |
|
mini_chunk_size = 1 |
|
mini_chunk_size = min(mini_chunk_size,hidden.shape[0]) |
|
for i in range(0, token_weights.size(0), mini_chunk_size): |
|
now_chunk_size = min(mini_chunk_size, token_weights.size(0) - i) |
|
sparse_embedding = torch.zeros(now_chunk_size , input_ids.size(1), vocab_size, |
|
dtype=token_weights.dtype, |
|
device=token_weights.device) |
|
sparse_embedding_chunks.append(torch.max((torch.scatter(sparse_embedding, dim=-1, index=input_ids[i:i+now_chunk_size, :].unsqueeze(-1), src=token_weights[i:i+now_chunk_size, :])), dim=1).values) |
|
sparse_embedding = torch.concat(sparse_embedding_chunks, dim=0) |
|
unused_tokens = [self.tokenizer.unk_token_id, self.tokenizer.pad_token_id, self.tokenizer.eos_token_id, self.tokenizer.bos_token_id] |
|
sparse_embedding[:,unused_tokens] = 0 |
|
return sparse_embedding |
|
|
|
@torch.no_grad() |
|
def process_sparse_embedding(self, sparse_embeddings,input_ids): |
|
results = [] |
|
unused_tokens = [self.tokenizer.unk_token_id, self.tokenizer.pad_token_id, self.tokenizer.eos_token_id, self.tokenizer.bos_token_id] |
|
batch_size = sparse_embeddings.size(0) |
|
for i in range(batch_size): |
|
results.append({}) |
|
for i, (sparse_embedding, input_id) in enumerate(zip(sparse_embeddings, input_ids)): |
|
for input_id_j in input_id.to(int).cpu().numpy().tolist(): |
|
if input_id_j in unused_tokens: |
|
continue |
|
if sparse_embedding[input_id_j] == 0: |
|
continue |
|
results[i][self.tokenizer.convert_ids_to_tokens(input_id_j)] = sparse_embedding[input_id_j].item() |
|
return results |
|
|
|
def encode(self, |
|
sentences: Union[str, List[str]], |
|
batch_size: int = 32, |
|
show_progress_bar: Optional[bool] = True, |
|
convert_to_numpy: bool = True, |
|
return_dense_vectors: bool = True, |
|
return_sparse_vectors: bool = False, |
|
max_length: int = 512, |
|
dense_dim: int = 1024, |
|
): |
|
if isinstance(sentences, str): |
|
sentences = [sentences] |
|
dense_vectors_list = [] |
|
sparse_vectors_list = [] |
|
for start_index in tqdm(range(0, len(sentences), batch_size), desc="Batches", disable=not show_progress_bar): |
|
sentences_batch = sentences[start_index:start_index + batch_size] |
|
batch_dict = self.tokenizer(sentences_batch, padding=True, truncation=True, max_length=max_length, return_tensors="pt") |
|
for key in batch_dict: |
|
batch_dict[key] = batch_dict[key].to(self.device) |
|
outputs = self.forward(**batch_dict,adapt_mean_pooling=False) |
|
hidden_states = outputs.last_hidden_state |
|
attention_mask = batch_dict["attention_mask"] |
|
dense_vectors = None |
|
sparse_vectors = None |
|
if return_dense_vectors: |
|
dense_vectors = self.wmean_pooling(hidden_states,attention_mask) |
|
dense_vectors = F.normalize(dense_vectors[:,:dense_dim], p=2, dim=-1) |
|
|
|
if convert_to_numpy: |
|
dense_vectors = dense_vectors.cpu().numpy() |
|
dense_vectors_list.append(dense_vectors) |
|
if return_sparse_vectors: |
|
sparse_vectors = self.sparse_pooling(batch_dict,hidden_states,attention_mask) |
|
|
|
if convert_to_numpy: |
|
sparse_vectors = self.process_sparse_embedding(sparse_vectors, batch_dict["input_ids"]) |
|
sparse_vectors_list.extend(sparse_vectors) |
|
else: |
|
sparse_vectors_list.append(sparse_vectors) |
|
|
|
if convert_to_numpy: |
|
dense_vectors_list = np.concatenate(dense_vectors_list, axis=0) |
|
else: |
|
dense_vectors_list = torch.cat(dense_vectors_list, dim=0) |
|
sparse_vectors_list = torch.cat(sparse_vectors_list, dim=0) |
|
if len(sparse_vectors_list) == 0: |
|
sparse_vectors_list = None |
|
if len(dense_vectors_list) == 0: |
|
dense_vectors_list = None |
|
return dense_vectors_list, sparse_vectors_list |
|
|
|
|
|
"""Compute similarity scores between queries and documents using dense and/or sparse embeddings. |
|
|
|
This method computes similarity scores between query-document pairs using a combination of dense and sparse embeddings. |
|
It supports both single strings and lists of strings as input. |
|
|
|
Args: |
|
queries (Union[str, List[str]]): Query text or list of query texts |
|
documents (Union[str, List[str]]): Document text or list of document texts |
|
show_progress_bar (Optional[bool]): Whether to show progress bar during encoding. Defaults to True. |
|
batch_size (int): Batch size for encoding. Defaults to 32. |
|
query_instruction (str): Instruction prefix for query encoding. Defaults to "Query:". |
|
return_dense_score (bool): Whether to compute and return dense embedding similarity scores. Defaults to True. |
|
return_sparse_score (bool): Whether to compute and return sparse embedding similarity scores. Defaults to True. |
|
weight_for_sparse_score (float): Weight factor for sparse scores when computing mixed scores. Defaults to 0.3. |
|
max_length (int): Maximum sequence length for tokenization. Defaults to 512. |
|
dense_dim (int): Dimension of dense embeddings. Defaults to 1024. |
|
|
|
Returns: |
|
Tuple containing: |
|
dense_score (numpy.ndarray or None): Dense similarity scores if return_dense_score is True, else None |
|
sparse_score (numpy.ndarray or None): Sparse similarity scores if return_sparse_score is True, else None |
|
mix_score (numpy.ndarray or None): Weighted combination of dense and sparse scores if both are computed, else None |
|
|
|
Note: |
|
- Dense scores are computed using dot product between query and document embeddings |
|
- Sparse scores are computed in chunks to handle memory efficiently |
|
- Mix scores are computed as: weight_for_sparse_score * sparse_score + dense_score |
|
""" |
|
@torch.no_grad() |
|
def compute_score(self, |
|
queries: Union[str, List[str]], |
|
documents: Union[str, List[str]], |
|
show_progress_bar: Optional[bool] = True, |
|
batch_size: int = 32, |
|
query_instruction:str = "Query:", |
|
return_dense_score: bool = True, |
|
return_sparse_score: bool = True, |
|
weight_for_sparse_score: float = 0.3, |
|
max_length: int = 512, |
|
dense_dim: int = 1024): |
|
query_embeddings_dense, query_embeddings_sparse = self.encode_query(queries, batch_size, show_progress_bar, |
|
convert_to_numpy=False, |
|
return_dense_vectors=return_dense_score, |
|
return_sparse_vectors=return_sparse_score, |
|
max_length=max_length, |
|
dense_dim=dense_dim, |
|
query_instruction=query_instruction, |
|
) |
|
corpus_embeddings_dense, corpus_embeddings_sparse = self.encode_corpus(documents, batch_size, show_progress_bar, |
|
convert_to_numpy=False, |
|
return_dense_vectors=return_dense_score, |
|
return_sparse_vectors=return_sparse_score, |
|
max_length=max_length, |
|
dense_dim=dense_dim, |
|
) |
|
dense_score = None |
|
sparse_score = None |
|
mix_score = None |
|
if return_dense_score: |
|
dense_score = query_embeddings_dense @ corpus_embeddings_dense.T |
|
dense_score = dense_score.cpu().numpy() |
|
if return_sparse_score: |
|
min_chunk_size = 1024 |
|
for i in range(0, query_embeddings_sparse.size(0), min_chunk_size): |
|
now_chunk_size = min(min_chunk_size, query_embeddings_sparse.size(0) - i) |
|
sparse_score_now_chunk = None |
|
for j in range(0, corpus_embeddings_sparse.size(0), min_chunk_size): |
|
sparse_score_chunk = query_embeddings_sparse[i:i+now_chunk_size] @ corpus_embeddings_sparse[j:j+min_chunk_size].T |
|
if sparse_score_now_chunk is None: |
|
sparse_score_now_chunk = sparse_score_chunk |
|
else: |
|
sparse_score_now_chunk = torch.cat((sparse_score_now_chunk, sparse_score_chunk), dim=1) |
|
if sparse_score is None: |
|
sparse_score = sparse_score_now_chunk |
|
else: |
|
sparse_score = torch.cat((sparse_score, sparse_score_now_chunk), dim=0) |
|
sparse_score = sparse_score.cpu().numpy() |
|
if return_sparse_score and return_dense_score: |
|
mix_score = weight_for_sparse_score * sparse_score + dense_score |
|
return dense_score, sparse_score, mix_score |
|
|
|
|
|
""" |
|
Encodes query sentences into vector representations. |
|
|
|
Args: |
|
sentences (Union[str, List[str]]): Input query sentence(s) to encode. Can be a single string or list of strings. |
|
batch_size (int, optional): Batch size for processing. Defaults to 32. |
|
show_progress_bar (Optional[bool], optional): Whether to display a progress bar. Defaults to True. |
|
convert_to_numpy (bool, optional): Whether to convert outputs to numpy arrays. Defaults to True. |
|
return_dense_vectors (bool, optional): Whether to return dense vector representations. Defaults to True. |
|
return_sparse_vectors (bool, optional): Whether to return sparse vector representations. Defaults to False. |
|
max_length (int, optional): Maximum sequence length for tokenization. Defaults to 512. |
|
dense_dim (int, optional): Dimension of dense output vectors. Defaults to 1024. |
|
query_instruction (str, optional): Instruction prefix to prepend to queries. Defaults to "Query:". |
|
|
|
Returns: |
|
Same output format as the encode() method, with vector representations of the input queries. |
|
|
|
Notes: |
|
This is a no-grad operation that wraps the encode() method by prepending a query instruction |
|
to each input sentence before encoding. |
|
""" |
|
@torch.no_grad() |
|
def encode_query(self, |
|
sentences: Union[str, List[str]], |
|
batch_size: int = 32, |
|
show_progress_bar: Optional[bool] = True, |
|
convert_to_numpy: bool = True, |
|
return_dense_vectors: bool = True, |
|
return_sparse_vectors: bool = False, |
|
max_length: int = 512, |
|
dense_dim: int = 1024, |
|
query_instruction:str = "Query:" |
|
): |
|
new_sentences = [" ".join([query_instruction, sentence]) for sentence in sentences] |
|
return self.encode(new_sentences, batch_size, show_progress_bar, convert_to_numpy, return_dense_vectors, return_sparse_vectors, max_length, dense_dim) |
|
|
|
|
|
"""Encodes a corpus of text sentences into vector representations. |
|
|
|
This method provides a wrapper for the encode method, specifically designed for corpus encoding. |
|
It processes text input into dense and/or sparse vector representations suitable for semantic search |
|
and other NLP tasks. |
|
|
|
Args: |
|
sentences (Union[str, List[str]]): Input text or list of texts to encode. |
|
batch_size (int, optional): Number of sentences to encode in each batch. Defaults to 32. |
|
show_progress_bar (bool, optional): Whether to display a progress bar during encoding. |
|
Defaults to True. |
|
convert_to_numpy (bool, optional): Whether to convert the output tensors to numpy arrays. |
|
Defaults to True. |
|
return_dense_vectors (bool, optional): Whether to return dense vector representations. |
|
Defaults to True. |
|
return_sparse_vectors (bool, optional): Whether to return sparse vector representations. |
|
Defaults to False. |
|
max_length (int, optional): Maximum length of input sequences. Texts will be truncated |
|
to this length. Defaults to 512. |
|
dense_dim (int, optional): Dimension of the dense output vectors. Defaults to 1024. |
|
|
|
Returns: |
|
The encoded representations as specified by return_dense_vectors and return_sparse_vectors |
|
parameters. Output format matches that of the encode method. |
|
|
|
Note: |
|
This method is decorated with @torch.no_grad() for inference-only operation, |
|
ensuring no gradients are computed during encoding. |
|
""" |
|
@torch.no_grad() |
|
def encode_corpus(self, |
|
sentences: Union[str, List[str]], |
|
batch_size: int = 32, |
|
show_progress_bar: Optional[bool] = True, |
|
convert_to_numpy: bool = True, |
|
return_dense_vectors: bool = True, |
|
return_sparse_vectors: bool = False, |
|
max_length: int = 512, |
|
dense_dim: int = 1024, |
|
): |
|
return self.encode(sentences, batch_size, show_progress_bar, convert_to_numpy, return_dense_vectors, return_sparse_vectors, max_length, dense_dim) |
|
|
|
@staticmethod |
|
def compute_sparse_score_dicts(dicts_query, dicts_corpus): |
|
scores_list = [] |
|
for dict_q in dicts_query: |
|
scores = [] |
|
for dict_d in dicts_corpus: |
|
score = 0 |
|
for key in dict_q: |
|
if key in dict_d: |
|
score += dict_q[key] * dict_d[key] |
|
scores.append(score) |
|
scores_list.append(deepcopy(scores)) |
|
return np.array(scores_list) |
|
|
|
|
|
|
|
class MiniCPMForCausalLM(MiniCPMPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = MiniCPMModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, MiniCPMForCausalLM |
|
|
|
>>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if self.config.pretraining_tp > 1: |
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) |
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] |
|
logits = torch.cat(logits, dim=-1) |
|
else: |
|
logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base)) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
@torch.inference_mode() |
|
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user", |
|
max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None, |
|
**kwargs): |
|
if history is None: |
|
history = [] |
|
if logits_processor: |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, |
|
"temperature": temperature, "logits_processor": logits_processor, **kwargs} |
|
else: |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, |
|
"temperature": temperature, "logits_processor": logits_processor, **kwargs} |
|
|
|
history.append({"role": role, "content": query}) |
|
history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False) |
|
inputs = tokenizer(history_str, return_tensors='pt').to(self.device) |
|
outputs = self.generate(**inputs, **gen_kwargs) |
|
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1] |
|
response = tokenizer.decode(outputs) |
|
pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL) |
|
matches = pattern.findall(response) |
|
if len(matches) > 0: |
|
response = matches[0] |
|
history.append({"role": "assistant", "content": response}) |
|
return response, history |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The MiniCPM Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`MiniCPMForSequenceClassification`] uses the first token in order to do the classification, as other models |
|
(e.g. Roberta) do. |
|
""", |
|
MINICPM_START_DOCSTRING, |
|
) |
|
class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = MiniCPMModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
logits = self.score(hidden_states[:,0,:]) |
|
pooled_logits = logits |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |