File size: 11,194 Bytes
725ce06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f5cfa
8d14ce6
16f5cfa
725ce06
 
 
16f5cfa
8d14ce6
16f5cfa
725ce06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0017ac3
 
997732c
725ce06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
---
pipeline_tag: visual-question-answering
---

## MiniCPM-V 2.0
**MiniCPM-V 2.8B** is an efficient version with promising performance for deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Our latest version, **MiniCPM-V 2.0** has several notable features. 

- πŸ”₯ **State-of-the-art Performance.** 

  MiniCPM-V 2.0 achieves **state-of-the-art performance** on multiple benchmarks (including OCRBench, TextVQA, MME, MMB, MathVista, etc) among models under 7B parameters. It even **outperforms strong Qwen-VL-Chat 9.6B, CogVLM-Chat 17.4B, and Yi-VL 34B on OpenCompass, a comprehesive evaluation over 11 popular benchmarks**. Notably, MiniCPM-V 2.0 shows **strong OCR capability**, achieving **comparable performance to Gemini Pro in scene-text understanding**, and **state-of-the-art performance on OCRBench** among open-source models.

- πŸ† **Trustworthy Behavior.** 

  LMMs are known for suffering from hallucination, often generating text not factually grounded in images. MiniCPM-V 2.0 is **the first end-side LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) [CVPR'24] series technique). This allows the model to **match GPT-4V in preventing hallucinations** on Object HalBench.

- 🌟 **High-Resolution Images at Any Aspect Raito.**

  MiniCPM-V 2.0 can accept **1.8 million pixel (e.g., 1344x1344) images at any aspect ratio**. This enables better perception of fine-grained visual information such as small objects and optical characters, which is achieved via a recent technique from [LLaVA-UHD](https://arxiv.org/pdf/2403.11703.pdf).

- ⚑️ **High Efficiency.** 

  MiniCPM-V 2.0 can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. For visual encoding, we compress the image representations into much fewer tokens via a perceiver resampler. This allows MiniCPM-V 2.0 to operate with **favorable memory cost and speed during inference even when dealing with high-resolution images**.



- πŸ™Œ **Bilingual Support.** 

  MiniCPM-V 2.0 **supports strong bilingual multimodal capabilities in both English and Chinese**. This is enabled by generalizing multimodal capabilities across languages, a technique from [VisCPM](https://arxiv.org/abs/2308.12038) [ICLR'24 Spotlight].

## Evaluation <!-- omit in toc -->

<div align="center">
    <img src=/openbmb/MiniCPM-V-2.0/resolve/main/assets/minicpmv-2-peformance2.png width=100% />
</div>
<details>
<summary>Click to view results on TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, Object HalBench. </summary>
<div align="center">
<div align="center">
    <img src=/openbmb/MiniCPM-V-2.0/resolve/main/assets/minicpmv-2-benchmark2.png width=140% />
</div>

<table style="margin: 0px auto;">
<thead>
  <tr>
    <th align="left">Model</th>
    <th>Size</th>
    <th>TextVQA val</th>
    <th>DocVQA test</th>
    <th>OCRBench</th>
    <th>OpenCompass</th>
    <th nowrap="nowrap" >MME</th>
    <th>MMB dev(en)</th>
    <th>MMB dev(zh)</th>
    <th>MMMU val</th>
    <th>MathVista</th>
    <th>LLaVA Bench</th>
    <th nowrap="nowrap">Object HalBench</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td colspan="12" align="left"><strong>Proprietary models</strong></td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left">Gemini Pro Vision</td>
    <td>- </td>
    <td>74.6</td>
    <td>88.1</td>
    <td>680</td>
    <td>63.8</td>
    <td>2148.9</td>
    <td>75.2</td>
    <td>74.0</td>
    <td>48.9</td>
    <td>45.8</td>
    <td>79.9</td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left">GPT-4V</td>
    <td>- </td>
    <td>78.0</td>
    <td>88.4</td>
    <td>516</td>
    <td>63.2</td>
    <td>1771.5</td>
    <td>75.1</td>
    <td>75.0</td>
    <td>53.8</td>
    <td>47.8</td>
    <td>93.1</td>
    <td>86.4 / 92.7</td>
  </tr>
  <tr>
    <td colspan="12" align="left"><strong>Open-source models 6B~34B</strong></td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >Yi-VL-6B</td>
    <td align="right" >6.7B</td>
    <td>45.5*</td>
    <td>17.1*</td>
    <td>290</td>
    <td>49.3</td>
    <td>1915.1 </td>
    <td>68.6 </td>
    <td>68.3 </td>
    <td>40.3 </td>
    <td>28.8 </td>
    <td>51.9 </td>
    <td>- </td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
    <td align="right" >9.6B</td>
    <td>61.5</td>
    <td>62.6</td>
    <td>488 </td>
    <td>52.1 </td>
    <td>1860.0 </td>
    <td>60.6 </td>
    <td>56.7 </td>
    <td>37.0 </td>
    <td>33.8 </td>
    <td>67.7 </td>
    <td>56.2 / 80.0</td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" >Yi-VL-34B</td>
    <td align="right" >34B</td>
    <td>43.4*</td>
    <td>16.9*</td>
    <td>290</td>
    <td>52.6 </td>
    <td>2050.2</td>
    <td>71.1</td>
    <td>71.4</td>
    <td>45.1</td>
    <td>30.7</td>
    <td>62.3</td>
    <td>- </td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >DeepSeek-VL-7B</td>
    <td align="right" >7.3B</td>
    <td>64.7*</td>
    <td>47.0* </td>
    <td>435</td>
    <td>55.6 </td>
    <td>1765.4 </td>
    <td>74.1 </td>
    <td>72.8 </td>
    <td>38.3 </td>
    <td>36.8</td>
    <td>77.8 </td>
    <td>- </td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >TextMonkey</td>
    <td align="right" >9.7B</td>
    <td>64.3</td>
    <td>66.7 </td>
    <td>558</td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
    <td>-</td>
    <td>- </td>
    <td>- </td>
  </tr>
    <tr>
    <td  nowrap="nowrap" align="left" >CogVLM-Chat</td>
    <td align="right" >17.4B</td>
    <td>70.4</td>
    <td>33.3*</td>
    <td>590 </td>
    <td>52.5 </td>
    <td>1736.6 </td>
    <td>63.7 </td>
    <td>53.8 </td>
    <td>37.3 </td>
    <td>34.7 </td>
    <td>73.9 </td>
    <td>73.6 / 87.4 </td>
  </tr>
  <tr>
    <td colspan="12" align="left"><strong>Open-source models 1B~3B </strong></td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >DeepSeek-VL-1.3B</td>
    <td align="right" >1.7B</td>
    <td>58.4*</td>
    <td>37.9*</td>
    <td>413</td>
    <td>46.0 </td>
    <td>1531.6 </td>
    <td>64.0 </td>
    <td>61.2 </td>
    <td>33.8 </td>
    <td>29.4 </td>
    <td>51.1 </td>
    <td>- </td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >MobileVLM V2</td>
    <td align="right" >3.1B</td>
    <td>57.5</td>
    <td>19.4*</td>
    <td>-</td>
    <td>-</td>
    <td>1440.5(P) </td>
    <td>63.2 </td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >Mini-Gemini</td>
    <td align="right" >2.2B</td>
    <td>56.2</td>
    <td>34.2*</td>
    <td>-</td>
    <td>-</td>
    <td>1653.0 </td>
    <td>59.8 </td>
    <td>- </td>
    <td>31.7 </td>
    <td>-</td>
    <td>- </td>
    <td>- </td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >MiniCPM-V</td>
    <td align="right" >2.8B </td>
    <td>60.6</td>
    <td>38.2 </td>
    <td>366</td>
    <td>47.6</td>
    <td>1650.2 </td>
    <td>67.9 </td>
    <td>65.3 </td>
    <td><strong>38.3</strong></td>
    <td>28.9</td>
    <td>51.3 </td>
    <td>78.4 / 88.5 </td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" ><strong>MiniCPM-V 2.0</strong></td>
    <td align="right" >2.8B </td>
    <td><strong>74.1</strong></td>
    <td><strong>71.9</strong> </td>
    <td><strong>605</strong></td>
    <td><strong>55.0</strong></td>
    <td><strong>1808.6</strong> </td>
    <td><strong>69.6</strong> </td>
    <td><strong>68.1</strong> </td>
    <td>38.2 </td>
    <td><strong>38.7</strong></td>
    <td><strong>69.2</strong> </td>
    <td><strong>85.5 / 92.2 </strong></td>
  </tr>
</tbody>
</table>

</div>
* We evaluate the officially released checkpoint by ourselves.

</details>

## Examples <!-- omit in toc -->

<table align="center">
    <p align="center">
      <img src="assets/minicpmv2-cases_2.png" width=95%/>
    </p>
</table>

We deploy MiniCPM-V 2.0 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.

<table align="center">
    <p align="center">
      <img src="assets/station.gif" width=40% style="display:inline-block;"/>
      <img src="assets/english_menu.gif" width=40% style="display:inline-block;"/>
     </p>
</table>




## Demo
Click here to try out the Demo of [MiniCPM-V-2.0](http://120.92.209.146:80).

## Deployment on Mobile Phone
MiniCPM-V-2.0 can be deployed on mobile phones with Android and Harmony operating systems. πŸš€ Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).


## Usage
Inference using Huggingface transformers on Nivdia GPUs or Mac with MPS (Apple silicon or AMD GPUs). Requirements tested on python 3.10:
```
Pillow==10.1.0
timm==0.9.10
torch==2.1.2
torchvision==0.16.2
transformers==4.36.0
sentencepiece==0.1.99
```

```python
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2.0', trust_remote_code=True, torch_dtype=torch.bfloat16)
# For Nvidia GPUs support BF16 (like A100, H100, RTX3090)
model = model.to(device='cuda', dtype=torch.bfloat16)
# For Nvidia GPUs do NOT support BF16 (like V100, T4, RTX2080)
#model = model.to(device='cuda', dtype=torch.float16)
# For Mac with MPS (Apple silicon or AMD GPUs).
# Run with `PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py`
#model = model.to(device='mps', dtype=torch.float16)

tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True)
model.eval()

image = Image.open('xx.jpg').convert('RGB')
question = 'What is in the image?'
msgs = [{'role': 'user', 'content': question}]

res, context, _ = model.chat(
    image=image,
    msgs=msgs,
    context=None,
    tokenizer=tokenizer,
    sampling=True,
    temperature=0.7
)
print(res)
```

Please look at [GitHub](https://github.com/OpenBMB/OmniLMM) for more detail about usage.


## MiniCPM-V 1.0 <!-- omit in toc -->
Please see the info about MiniCPM-V 1.0 [here](./minicpm_v1.md).

## License

#### Model License
* The code in this repo is released according to [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)
* The usage of MiniCPM-V's parameters is subject to ["General Model License Agreement - Source Notes - Publicity Restrictions - Commercial License"](https://github.com/OpenBMB/General-Model-License/blob/main/)
* The parameters are fully open to acedemic research
* Please contact [email protected] to obtain a written authorization for commercial uses. Free commercial use is also allowed after registration.

#### Statement
* As a LLM, MiniCPM-V generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V does not represent the views and positions of the model developers
* We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.