finalf0 commited on
Commit
de7c946
·
verified ·
1 Parent(s): c68b9f3

Update readme, support vLLM

Browse files
Files changed (1) hide show
  1. README.md +28 -5
README.md CHANGED
@@ -14,13 +14,11 @@ datasets:
14
 
15
  ## News <!-- omit in toc -->
16
 
 
17
  * [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
18
- * [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](https://github.com/OpenBMB/MiniCPM-V/blob/8a1f766b85595a8095651eed9a44a83a965b305b/README_en.md#minicpm-v-) now!
19
- * [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
20
  * [2024.04.12] We open-source MiniCPM-V-2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.
21
- * [2024.03.14] MiniCPM-V now supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md) with the SWIFT framework. Thanks to [Jintao](https://github.com/Jintao-Huang) for the contribution!
22
- * [2024.03.01] MiniCPM-V now can be deployed on Mac!
23
- * [2024.02.01] We open-source MiniCPM-V and OmniLMM-12B, which support efficient end-side deployment and powerful multimodal capabilities correspondingly.
24
 
25
  ## MiniCPM-V 2.0
26
 
@@ -86,6 +84,31 @@ Click here to try out the Demo of [MiniCPM-V 2.0](http://120.92.209.146:80).
86
  ## Deployment on Mobile Phone
87
  MiniCPM-V 2.0 can be deployed on mobile phones with Android and Harmony operating systems. 🚀 Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).
88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  ## Usage
91
  Inference using Huggingface transformers on Nivdia GPUs or Mac with MPS (Apple silicon or AMD GPUs). Requirements tested on python 3.10:
 
14
 
15
  ## News <!-- omit in toc -->
16
 
17
+ * [2024.04.23] MiniCPM-V 2.0 supports [vLLM](#vllm) now!
18
  * [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
19
+ * [2024.04.17] MiniCPM-V 2.0 supports deploying [WebUI Demo](https://github.com/OpenBMB/MiniCPM-V/blob/8a1f766b85595a8095651eed9a44a83a965b305b/README_en.md#minicpm-v-) now!
20
+ * [2024.04.15] MiniCPM-V 2.0 supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
21
  * [2024.04.12] We open-source MiniCPM-V-2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.
 
 
 
22
 
23
  ## MiniCPM-V 2.0
24
 
 
84
  ## Deployment on Mobile Phone
85
  MiniCPM-V 2.0 can be deployed on mobile phones with Android and Harmony operating systems. 🚀 Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).
86
 
87
+ ## Inference with vLLM<a id="vllm"></a>
88
+
89
+ <details>
90
+ <summary>Click to see how to inference with vLLM </summary>
91
+ Because our pull request to vLLM is still waiting for reviewing, we fork this repository to build and test our vLLM demo. Here are the steps:
92
+
93
+ 1. Clone our version of vLLM:
94
+ ```shell
95
+ git clone https://github.com/OpenBMB/vllm.git
96
+ ```
97
+ 2. Install vLLM:
98
+ ```shell
99
+ cd vllm
100
+ pip install -e .
101
+ ```
102
+ 3. Install timm:
103
+ ```shell
104
+ pip install timm=0.9.10
105
+ ```
106
+ 4. Run our demo:
107
+ ```shell
108
+ python examples/minicpmv_example.py
109
+ ```
110
+ </details>
111
+
112
 
113
  ## Usage
114
  Inference using Huggingface transformers on Nivdia GPUs or Mac with MPS (Apple silicon or AMD GPUs). Requirements tested on python 3.10: