Avoid duplicate input kwargs in `_decode`
Browse files- modeling_minicpmo.py +6 -1
modeling_minicpmo.py
CHANGED
@@ -649,6 +649,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
649 |
return outputs
|
650 |
|
651 |
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
|
|
652 |
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
653 |
streamer = TextIteratorStreamer(tokenizer=tokenizer)
|
654 |
generation_kwargs = {
|
@@ -777,6 +778,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
777 |
tokenizer=None,
|
778 |
vision_hidden_states=None,
|
779 |
stream=False,
|
|
|
780 |
**kwargs,
|
781 |
):
|
782 |
assert input_ids is not None
|
@@ -814,7 +816,10 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
814 |
outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs)
|
815 |
|
816 |
result = self._decode_text(outputs.sequences, tokenizer)
|
817 |
-
|
|
|
|
|
|
|
818 |
return result, outputs
|
819 |
|
820 |
def chat(
|
|
|
649 |
return outputs
|
650 |
|
651 |
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
652 |
+
kwargs.pop("output_hidden_states", None)
|
653 |
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
654 |
streamer = TextIteratorStreamer(tokenizer=tokenizer)
|
655 |
generation_kwargs = {
|
|
|
778 |
tokenizer=None,
|
779 |
vision_hidden_states=None,
|
780 |
stream=False,
|
781 |
+
return_dict_in_generate=False,
|
782 |
**kwargs,
|
783 |
):
|
784 |
assert input_ids is not None
|
|
|
816 |
outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs)
|
817 |
|
818 |
result = self._decode_text(outputs.sequences, tokenizer)
|
819 |
+
|
820 |
+
if return_dict_in_generate is True:
|
821 |
+
return outputs
|
822 |
+
|
823 |
return result, outputs
|
824 |
|
825 |
def chat(
|