File size: 8,501 Bytes
d7cca6a
 
 
 
 
f03dca5
d7cca6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b4815
d7cca6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c769fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
---
license: apache-2.0
language:
- zh
- en
pipeline_tag: text-generation
---
<div align="center">
<img src="https://github.com/OpenBMB/MiniCPM/tree/main/assets/minicpm_logo.png" width="500em" ></img> 
</div>

<p align="center">
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">MiniCPM Repo</a> |
<a href="https://arxiv.org/abs/2404.06395" target="_blank">MiniCPM Paper</a> |
<a href="https://github.com/OpenBMB/MiniCPM-V/" target="_blank">MiniCPM-V Repo</a> |
Join us in <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
 
</p>

## Introduction
MiniCPM3-4B is the 3rd generation of MiniCPM series. The overall performance of MiniCPM3-4B surpasses Phi-3.5-mini-Instruct and GPT-3.5-Turbo-0125, being comparable with many recent 7B~9B models.

Compared to MiniCPM1.0/MiniCPM2.0, MiniCPM3-4B has a more powerful and versatile skill set to enable more general usage. MiniCPM3-4B supports function call, along with code interpreter. Please refer to [Advanced Features](https://github.com/OpenBMB/MiniCPM/tree/main?tab=readme-ov-file#%E8%BF%9B%E9%98%B6%E5%8A%9F%E8%83%BD) for usage guidelines.

MiniCPM3-4B has a 32k context window. Equipped with LLMxMapReduce, MiniCPM3-4B can handle infinite context theoretically, without requiring huge amount of memory.

## Usage
### Inference with Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

path = "openbmb/MiniCPM3-4B"
device = "cuda"

tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)

messages = [
    {"role": "user", "content": "推荐5个北京的景点。"},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)

model_outputs = model.generate(
    model_inputs,
    max_new_tokens=1024,
    top_p=0.7,
    temperature=0.7,
    repetition_penalty=1.02
)

output_token_ids = [
    model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
]

responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
```

### Inference with [vLLM](https://github.com/vllm-project/vllm)
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

model_name = "openbmb/MiniCPM3-4B"
prompt = [{"role": "user", "content": "推荐5个北京的景点。"}]

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)

llm = LLM(
    model=model_name,
    trust_remote_code=True,
    tensor_parallel_size=1
)
sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)

outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)
```

## Evaluation Results

<table>
    <tr>
        <td>Benchmark</td>
        <td>Qwen2-7B-Instruct</td>
        <td>GLM-4-9B-Chat</td>
        <td>Gemma2-9B-it</td>
        <td>Llama3.1-8B-Instruct</td>
        <td>GPT-3.5-Turbo-0125</td>
        <td>Phi-3.5-mini-Instruct(3.8B)</td>
        <td>MiniCPM3-4B </td>
    </tr>
    <tr>
        <td colspan="15" align="left"><strong>English</strong></td>
    </tr>
    <tr>
        <td>MMLU</td>
        <td>70.5</td>
        <td>72.4</td>
        <td>72.6</td>
        <td>69.4</td>
        <td>69.2</td>
        <td>68.4</td>
        <td>67.2 </td>
    </tr>
    <tr>
        <td>BBH</td>
        <td>64.9</td>
        <td>76.3</td>
        <td>65.2</td>
        <td>67.8</td>
        <td>70.3</td>
        <td>68.6</td>
        <td>70.2 </td>
    </tr>
    <tr>
        <td>MT-Bench</td>
        <td>8.41</td>
        <td>8.35</td>
        <td>7.88</td>
        <td>8.28</td>
        <td>8.17</td>
        <td>8.60</td>
        <td>8.41 </td>
    </tr>
    <tr>
        <td>IFEVAL (Prompt Strict-Acc.)</td>
        <td>51.0</td>
        <td>64.5</td>
        <td>71.9</td>
        <td>71.5</td>
        <td>58.8</td>
        <td>49.4</td>
        <td>68.4 </td>
    </tr>
    <tr>
        <td colspan="15" align="left"><strong>Chinese</strong></td>
    </tr>
    <tr>
        <td>CMMLU</td>
        <td>80.9</td>
        <td>71.5</td>
        <td>59.5</td>
        <td>55.8</td>
        <td>54.5</td>
        <td>46.9</td>
        <td>73.3 </td>
    </tr>
    <tr>
        <td>CEVAL</td>
        <td>77.2</td>
        <td>75.6</td>
        <td>56.7</td>
        <td>55.2</td>
        <td>52.8</td>
        <td>46.1</td>
        <td>73.6 </td>
    </tr>
    <tr>
        <td>AlignBench v1.1</td>
        <td>7.10</td>
        <td>6.61</td>
        <td>7.10</td>
        <td>5.68</td>
        <td>5.82</td>
        <td>5.73</td>
        <td>6.74 </td>
    </tr>
    <tr>
        <td>FollowBench-zh (SSR)</td>
        <td>63.0</td>
        <td>56.4</td>
        <td>57.0</td>
        <td>50.6</td>
        <td>64.6</td>
        <td>58.1</td>
        <td>66.8 </td>
    </tr>
    <tr>
        <td colspan="15" align="left"><strong>Math</strong></td>
    </tr>
    <tr>
        <td>MATH</td>
        <td>49.6</td>
        <td>50.6</td>
        <td>46.0</td>
        <td>51.9</td>
        <td>41.8</td>
        <td>46.4</td>
        <td>46.6 </td>
    </tr>
    <tr>
        <td>GSM8K</td>
        <td>82.3</td>
        <td>79.6</td>
        <td>79.7</td>
        <td>84.5</td>
        <td>76.4</td>
        <td>82.7</td>
        <td>81.1 </td>
    </tr>
    <tr>
        <td>MathBench</td>
        <td>63.4</td>
        <td>59.4</td>
        <td>45.8</td>
        <td>54.3</td>
        <td>48.9</td>
        <td>54.9</td>
        <td>65.6 </td>
    </tr>
    <tr>
        <td colspan="15" align="left"><strong>Code</strong></td>
    </tr>
    <tr>
        <td>HumanEval+</td>
        <td>70.1</td>
        <td>67.1</td>
        <td>61.6</td>
        <td>62.8</td>
        <td>66.5</td>
        <td>68.9</td>
        <td>68.3 </td>
    </tr>
    <tr>
        <td>MBPP+</td>
        <td>57.1</td>
        <td>62.2</td>
        <td>64.3</td>
        <td>55.3</td>
        <td>71.4</td>
        <td>55.8</td>
        <td>63.2 </td>
    </tr>
    <tr>
        <td>LiveCodeBench</td>
        <td>22.2</td>
        <td>20.2</td>
        <td>19.2</td>
        <td>20.4</td>
        <td>24.0</td>
        <td>19.6</td>
        <td>22.6 </td>
    </tr>
    <tr>
        <td colspan="15" align="left"><strong>Function Call</strong></td>
    </tr>
    <tr>
        <td>BFCL</td>
        <td>71.6</td>
        <td>70.1</td>
        <td>19.2</td>
        <td>73.3</td>
        <td>75.4</td>
        <td>48.4</td>
        <td>76.0 </td>
    </tr>
    <tr>
        <td colspan="15" align="left"><strong>Overall</strong></td>
    </tr>
    <tr>
        <td>Average</td>
        <td>65.3</td>
        <td>65.0</td>
        <td>57.9</td>
        <td>60.8</td>
        <td>61.0</td>
        <td>57.2</td>
        <td><strong>66.3</strong></td>
    </tr>
</table>


## Statement
* As a language model, MiniCPM3-4B generates content by learning from a vast amount of text.
* However, it does not possess the ability to comprehend or express personal opinions or value judgments.
* Any content generated by MiniCPM3-4B does not represent the viewpoints or positions of the model developers.
* Therefore, when using content generated by MiniCPM3-4B, users should take full responsibility for evaluating and verifying it on their own.

## LICENSE
* This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. 
* The usage of MiniCPM3-4B model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM3-4B are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.

## Citation

```
@article{hu2024minicpm,
  title={MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies},
  author={Hu, Shengding and Tu, Yuge and Han, Xu and He, Chaoqun and Cui, Ganqu and Long, Xiang and Zheng, Zhi and Fang, Yewei and Huang, Yuxiang and Zhao, Weilin and others},
  journal={arXiv preprint arXiv:2404.06395},
  year={2024}
}
```