FrankC0st1e
commited on
Commit
·
49e4794
1
Parent(s):
6c769fa
add vllm inference example
Browse files
README.md
CHANGED
@@ -18,11 +18,11 @@ MiniCPM3-4B is the 3rd generation of MiniCPM series. The overall performance of
|
|
18 |
|
19 |
Compared to MiniCPM1.0/MiniCPM2.0, MiniCPM3-4B has a more powerful and versatile skill set to enable more general usage. MiniCPM3-4B supports function call, along with code interpreter. Please refer to []() for usage guidelines.
|
20 |
|
21 |
-
MiniCPM3-4B has a 32k context window. Equipped with
|
22 |
|
23 |
## Usage
|
|
|
24 |
```python
|
25 |
-
|
26 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
27 |
import torch
|
28 |
|
@@ -42,7 +42,7 @@ model_outputs = model.generate(
|
|
42 |
max_new_tokens=1024,
|
43 |
top_p=0.7,
|
44 |
temperature=0.7,
|
45 |
-
repetition_penalty=1.02
|
46 |
)
|
47 |
|
48 |
output_token_ids = [
|
@@ -53,6 +53,29 @@ responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0
|
|
53 |
print(responses)
|
54 |
```
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
## Evaluation Results
|
57 |
|
58 |
<table>
|
|
|
18 |
|
19 |
Compared to MiniCPM1.0/MiniCPM2.0, MiniCPM3-4B has a more powerful and versatile skill set to enable more general usage. MiniCPM3-4B supports function call, along with code interpreter. Please refer to []() for usage guidelines.
|
20 |
|
21 |
+
MiniCPM3-4B has a 32k context window. Equipped with LLMxMapReduce, MiniCPM3-4B can handle infinite contexts theoretically, without requiring huge amount of memory.
|
22 |
|
23 |
## Usage
|
24 |
+
### Inference with Transformers
|
25 |
```python
|
|
|
26 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
27 |
import torch
|
28 |
|
|
|
42 |
max_new_tokens=1024,
|
43 |
top_p=0.7,
|
44 |
temperature=0.7,
|
45 |
+
repetition_penalty=1.02
|
46 |
)
|
47 |
|
48 |
output_token_ids = [
|
|
|
53 |
print(responses)
|
54 |
```
|
55 |
|
56 |
+
### Inference with [vLLM](https://github.com/vllm-project/vllm)
|
57 |
+
```python
|
58 |
+
from transformers import AutoTokenizer
|
59 |
+
from vllm import LLM, SamplingParams
|
60 |
+
|
61 |
+
model_name = "openbmb/MiniCPM3-4B"
|
62 |
+
prompt = [{"role": "user", "content": "推荐5个北京的景点。"}]
|
63 |
+
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
65 |
+
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
66 |
+
|
67 |
+
llm = LLM(
|
68 |
+
model=model_name,
|
69 |
+
trust_remote_code=True,
|
70 |
+
tensor_parallel_size=1
|
71 |
+
)
|
72 |
+
sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)
|
73 |
+
|
74 |
+
outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
|
75 |
+
|
76 |
+
print(outputs[0].outputs[0].text)
|
77 |
+
```
|
78 |
+
|
79 |
## Evaluation Results
|
80 |
|
81 |
<table>
|