File size: 4,222 Bytes
6a3a2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: classifier.skops
widget:
- structuredData:
    distanceTssMean:
    - 0.005956897512078285
    - 0.0535997599363327
    - 0.0007216916419565678
    distanceTssMinimum:
    - 0.00023104190768208355
    - 0.008684908039867878
    - 0.0
    eqtlColocClppMaximum:
    - 0.0
    - 0.0
    - 2.9394341254374012e-05
    eqtlColocClppMaximumNeighborhood:
    - -1.0844675302505493
    - 0.0
    - -2.4551262855529785
    eqtlColocLlrMaximum:
    - 0.0
    - 0.0
    - -5.864833831787109
    eqtlColocLlrMaximumNeighborhood:
    - 0.6375470161437988
    - 0.0
    - -0.6227747797966003
    pqtlColocClppMaximum:
    - 0.0
    - 0.0
    - 0.0
    pqtlColocClppMaximumNeighborhood:
    - 0.0
    - 0.0
    - 0.0
    pqtlColocLlrMaximum:
    - 0.0
    - 0.0
    - 0.0
    pqtlColocLlrMaximumNeighborhood:
    - 0.0
    - 0.0
    - 0.0
    sqtlColocClppMaximum:
    - 0.0
    - 0.0
    - 0.0
    sqtlColocClppMaximumNeighborhood:
    - -1.75723135471344
    - 0.0
    - -3.7946090698242188
    sqtlColocLlrMaximum:
    - 0.0
    - 0.0
    - 0.0
    sqtlColocLlrMaximumNeighborhood:
    - 0.5101715922355652
    - 0.0
    - 0.5695658922195435
    studyLocusId:
    - -3543201973216145411
    - -4859077617144690060
    - -870008257560905822
    tuqtlColocClppMaximum:
    - 0.014770692214369774
    - 0.0
    - 0.0
    tuqtlColocClppMaximumNeighborhood:
    - -2.5447564125061035
    - 0.0
    - -2.497274160385132
    tuqtlColocLlrMaximum:
    - 2.057318925857544
    - 0.0
    - 0.0
    tuqtlColocLlrMaximumNeighborhood:
    - 0.35586467385292053
    - 0.0
    - -0.7435243129730225
    vepMaximum:
    - 0.003306703409180045
    - 0.0
    - 5.660330498358235e-05
    vepMaximumNeighborhood:
    - 0.005385574419051409
    - 0.0
    - 0.026831166818737984
    vepMean:
    - 0.001106836018152535
    - 0.0
    - 1.4581254617951345e-05
    vepMeanNeighborhood:
    - 0.0007926996913738549
    - 0.0
    - 0.00018241332145407796
---

# Model description

The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:

        - Distance: (from credible set variants to gene)
        - Molecular QTL Colocalization
        - Chromatin Interaction: (e.g., promoter-capture Hi-C)
        - Variant Pathogenicity: (from VEP)

        More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
        

## Intended uses & limitations

[More Information Needed]

## Training Procedure

Gradient Boosting Classifier

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter           | Value        |
|--------------------------|--------------|
| ccp_alpha                | 0.0          |
| criterion                | friedman_mse |
| init                     |              |
| learning_rate            | 0.1          |
| loss                     | log_loss     |
| max_depth                | 5            |
| max_features             |              |
| max_leaf_nodes           |              |
| min_impurity_decrease    | 0.0          |
| min_samples_leaf         | 1            |
| min_samples_split        | 2            |
| min_weight_fraction_leaf | 0.0          |
| n_estimators             | 100          |
| n_iter_no_change         |              |
| random_state             | 42           |
| subsample                | 1.0          |
| tol                      | 0.0001       |
| validation_fraction      | 0.1          |
| verbose                  | 0            |
| warm_start               | False        |

</details>

# How to Get Started with the Model

To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
        The model can then be used to make predictions using the `predict` method.

        More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
        

# Citation

https://doi.org/10.1038/s41588-021-00945-5

# License

MIT