File size: 4,222 Bytes
6a3a2c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: classifier.skops
widget:
- structuredData:
distanceTssMean:
- 0.005956897512078285
- 0.0535997599363327
- 0.0007216916419565678
distanceTssMinimum:
- 0.00023104190768208355
- 0.008684908039867878
- 0.0
eqtlColocClppMaximum:
- 0.0
- 0.0
- 2.9394341254374012e-05
eqtlColocClppMaximumNeighborhood:
- -1.0844675302505493
- 0.0
- -2.4551262855529785
eqtlColocLlrMaximum:
- 0.0
- 0.0
- -5.864833831787109
eqtlColocLlrMaximumNeighborhood:
- 0.6375470161437988
- 0.0
- -0.6227747797966003
pqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximumNeighborhood:
- -1.75723135471344
- 0.0
- -3.7946090698242188
sqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocLlrMaximumNeighborhood:
- 0.5101715922355652
- 0.0
- 0.5695658922195435
studyLocusId:
- -3543201973216145411
- -4859077617144690060
- -870008257560905822
tuqtlColocClppMaximum:
- 0.014770692214369774
- 0.0
- 0.0
tuqtlColocClppMaximumNeighborhood:
- -2.5447564125061035
- 0.0
- -2.497274160385132
tuqtlColocLlrMaximum:
- 2.057318925857544
- 0.0
- 0.0
tuqtlColocLlrMaximumNeighborhood:
- 0.35586467385292053
- 0.0
- -0.7435243129730225
vepMaximum:
- 0.003306703409180045
- 0.0
- 5.660330498358235e-05
vepMaximumNeighborhood:
- 0.005385574419051409
- 0.0
- 0.026831166818737984
vepMean:
- 0.001106836018152535
- 0.0
- 1.4581254617951345e-05
vepMeanNeighborhood:
- 0.0007926996913738549
- 0.0
- 0.00018241332145407796
---
# Model description
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
- Distance: (from credible set variants to gene)
- Molecular QTL Colocalization
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
- Variant Pathogenicity: (from VEP)
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
## Intended uses & limitations
[More Information Needed]
## Training Procedure
Gradient Boosting Classifier
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|--------------|
| ccp_alpha | 0.0 |
| criterion | friedman_mse |
| init | |
| learning_rate | 0.1 |
| loss | log_loss |
| max_depth | 5 |
| max_features | |
| max_leaf_nodes | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| n_estimators | 100 |
| n_iter_no_change | |
| random_state | 42 |
| subsample | 1.0 |
| tol | 0.0001 |
| validation_fraction | 0.1 |
| verbose | 0 |
| warm_start | False |
</details>
# How to Get Started with the Model
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
The model can then be used to make predictions using the `predict` method.
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
# Citation
https://doi.org/10.1038/s41588-021-00945-5
# License
MIT
|